• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Abelian BF theory / Théorie BF abélienne

Mathieu, Philippe 02 July 2018 (has links)
Cette thèse porte sur la théorie BF abélienne sur une variété fermée de dimen-sion 3. Elle est formulée en termes de classes de jauge qui sont en fait des classes de cohomologie de Deligne-Beilinson. Cette formulation offre la possibilité d’extraire les quantités mathématiquement pertinentes d’intégrales fonctionnelles formelles. La fonction de partition et les valeurs moyennes d’observables sont ainsi calculées. Ces calculs complètent ceux effectués pour la théorie de Chern-Simons abélienne et ces résultats sont liés entre eux de même qu’avec les invariants de Reshetikhin-Turaev et de Turaev-Viro abéliens. Deux extensions de ce travail sont discutées. Premièrement, une approche graphique est proposée afin de traiter l’invariant classique SU(N) de Chern-Simons. Deuxièmement, une interprétation géométrique de la procédure de fixation de jauge est présentée pour la théorie de Chern-Simons abélienne dans mathbb{R}^{4l+3}. / In this study, the abelian BF theory is considered on a closed manifold of di-mension 3. It is formulated in terms of gauge classes which appear to be Deligne-Beilinson cohomology classes. Such a formulation offers the possibility to extract the quantities mathematically relevant quantities from formal functional integrals. This way, the partition function and the expectation value of observables are computed. Those computations complete the ones performed with the abelian Chern-Simons theory and the results appear to be connected together and also with abelian Reshetikhin-Turaev and Turaev-Viro topological invariants. Two extensions of this study are also discussed. Firstly, a graphical approach is proposed to deal with the SU(N) classical Chern-Simons invariant. Secondly, a geometric interpretation of the gauge fixing procedure is presented for the abelian Chern-Simons theory in mathbb{R}^{4l+3}.

Page generated in 0.1141 seconds