Spelling suggestions: "subject:"invariants."" "subject:"nvariants.""
71 |
Linear differential invariance under an operator related to the Laplace transformation ...Rainville, Earl David, January 1900 (has links)
Thesis (Ph. D.)--University of Michigan, 1939. / "Reprinted from the American journal of mathematics, vol. LXII, number 2 [1940]."
|
72 |
Konjugationsinvarianten in der Umgebung invarianter Kreise von Twist-AbbildungenRotter, Harald. January 1999 (has links)
Thesis (doctoral)--Bonn, 1998. / Includes bibliographical references (p. 111-112).
|
73 |
Die Kombinatorik der Diagrammalgebren von Invarianten endlichen TypsKneissler, Jan. January 1999 (has links)
Thesis (doctoral)--Rheinischen-Friedrich-Wilhelms-Universität. / "August 1999." Includes bibliographical references (p. 106-109) and index.
|
74 |
Unitarily invariant geometry on Grassmann manifold /Shen, Hongrui. January 2006 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references (leaves 57-59). Also available in electronic version.
|
75 |
Constante cosmológica: algumas consequências algébricas e dinâmicasBeltrán Almeida, J. P [UNESP] 29 September 2006 (has links) (PDF)
Made available in DSpace on 2016-05-17T16:50:51Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-09-29. Added 1 bitstream(s) on 2016-05-17T16:54:28Z : No. of bitstreams: 1
000855054.pdf: 470877 bytes, checksum: 60b3c5b992ae7d78b6dc013884d65cfa (MD5) / Nesta tese vamos estudar dois aspectos diferentes da física da constante cosmológica: a estrutura algébrica do grupo de de Sitter, e as suas implicações na dinâmica do Universo. Na primeira parte, apresentaremos uma descrição da estrutura geométrica do espaço de de Sitter, bem como uma discussão detalhada da estrutura do grupo de de Sitter. Revisaremos os limites do grupo de de Sitter obtidos por meio do processo de contração de Inönü-Wigner, e estudaremos o limite formal 'lâmbda' 'SETA' 'INFINITO'. Neste limite, obtem-se um espaço-tempo singular, maximalmente simétrico, transitivo sob transformações conformes próprias, e com propriedades termodinâmicas que se ajustam à idéia de uma condição inicial para um Universo com big-bang. Ainda neste contexto, proporemos uma relatividade restrita baseada no grupo de de Sitter. Nesta teoria, a constante cosmológica introduz uma escala de comprimento invariante: o raio de de Sitter. A introdução desta escala invariante não implica numa violação da simetria de Lorentz, mas sim numa mudança na estrutura causal do espaço-tempo, bem como nas definições de momento e energia. Na segunda parte da tese, que trata das aplicações cosmológicas, apresentaremos um modelo dinâmico para a constante cosmológica. Neste modelo, como consequência das equações de Einstein, uma variação em 'lâmbda' deve necessariamente ser compensada pela criação ou destruição de matéria, de modo que a energia total seja mantida constante. Um modelo particular para esta evolução da constante cosmológica é apresentado, o qual está baseado no principio holográfico. Veremos como o modelo pode incorporar simultaneamente a expansão acelerada do Universo, e a coincidência na ordem de grandeza das densidades de energia escura e de matéria / In this thesis we study two different aspects of the physics of the cosmological constant: the algebraic structure of the de Sitter group, and its implications in the large scale dynamics of the Universe. In the first part we present a general description of the geometrical structure of de Sitter space, and a discussion about the structure of de Sitter group. We review the contraction limits of de Sitter group, obtained by means of the Inönü-Wigner procedure, and we study in detail the formal limit 'lâmbda' 'SETA' 'INFINITO'. In this limit, one obtains a maximally-symmetric, singular spacetime, transitive under proper conformal transformations, and with thermodynamic properties that agreee with the idea of an initial condition for a big-bang Universe. In the same context, we propose a special relativity based on the de Sitter group. In this theory, the cosmological constant introduces an invariant length scale: the de Sitter radius. The introduction of this invariant scale does not imply a violation of the Lorentz symmetry, but simply a change in the causal structure of the spacetime, as well as in the basic notions of momentum and energy. In the second part of the thesis, that related with cosmological applications, a dynamic model for the cosmological constant will be presented. In this model, as a consequence of Einstein's equations, a variation in 'lâmbda' must necessarily be compensated by creation or destruction of matterenergy, in such a way that the total energy remains constant. A particular model allowing for the evolution of the cosmological constant is presented, which is based on the holographic principle. We will show how this model can accommodate simultaneously the accelerated expansion of the Universe and the coincidence in the magnitude of matter and dark energy densities
|
76 |
Some aspects of adiabatic evolutionWanelik, Kazimierz January 1993 (has links)
No description available.
|
77 |
Constante cosmológica : algumas consequências algébricas e dinâmicas /Beltrán Almeida, Juan Pablo. January 2006 (has links)
Orientador: José Geraldo Pereira / Banca: Saulo Carneiro de Souza Silva / Banca: Mario Novello / Banca: Ruben Aldrovandi / Banca: Luis Raul Weber Abramo / Resumo: Nesta tese vamos estudar dois aspectos diferentes da física da constante cosmológica: a estrutura algébrica do grupo de de Sitter, e as suas implicações na dinâmica do Universo. Na primeira parte, apresentaremos uma descrição da estrutura geométrica do espaço de de Sitter, bem como uma discussão detalhada da estrutura do grupo de de Sitter. Revisaremos os limites do grupo de de Sitter obtidos por meio do processo de contração de Inönü-Wigner, e estudaremos o limite formal 'lâmbda' 'SETA' 'INFINITO'. Neste limite, obtem-se um espaço-tempo singular, maximalmente simétrico, transitivo sob transformações conformes próprias, e com propriedades termodinâmicas que se ajustam à idéia de uma condição inicial para um Universo com "big-bang". Ainda neste contexto, proporemos uma "relatividade restrita" baseada no grupo de de Sitter. Nesta teoria, a constante cosmológica introduz uma escala de comprimento invariante: o raio de de Sitter. A introdução desta escala invariante não implica numa violação da simetria de Lorentz, mas sim numa mudança na estrutura causal do espaço-tempo, bem como nas definições de momento e energia. Na segunda parte da tese, que trata das aplicações cosmológicas, apresentaremos um modelo dinâmico para a "constante" cosmológica. Neste modelo, como consequência das equações de Einstein, uma variação em 'lâmbda' deve necessariamente ser compensada pela criação ou destruição de matéria, de modo que a energia total seja mantida constante. Um modelo particular para esta evolução da constante cosmológica é apresentado, o qual está baseado no principio holográfico. Veremos como o modelo pode incorporar simultaneamente a expansão acelerada do Universo, e a coincidência na ordem de grandeza das densidades de energia escura e de matéria / Abstract: In this thesis we study two different aspects of the physics of the cosmological constant: the algebraic structure of the de Sitter group, and its implications in the large scale dynamics of the Universe. In the first part we present a general description of the geometrical structure of de Sitter space, and a discussion about the structure of de Sitter group. We review the contraction limits of de Sitter group, obtained by means of the Inönü-Wigner procedure, and we study in detail the formal limit 'lâmbda' 'SETA' 'INFINITO'. In this limit, one obtains a maximally-symmetric, singular spacetime, transitive under proper conformal transformations, and with thermodynamic properties that agreee with the idea of an initial condition for a "big-bang" Universe. In the same context, we propose a "special relativity" based on the de Sitter group. In this theory, the cosmological constant introduces an invariant length scale: the de Sitter radius. The introduction of this invariant scale does not imply a violation of the Lorentz symmetry, but simply a change in the causal structure of the spacetime, as well as in the basic notions of momentum and energy. In the second part of the thesis, that related with cosmological applications, a dynamic model for the cosmological "constant will be presented. In this model, as a consequence of Einstein's equations, a variation in 'lâmbda' must necessarily be compensated by creation or destruction of matterenergy, in such a way that the total energy remains constant. A particular model allowing for the evolution of the cosmological constant is presented, which is based on the holographic principle. We will show how this model can accommodate simultaneously the accelerated expansion of the Universe and the coincidence in the magnitude of matter and dark energy densities / Doutor
|
78 |
Generalized chromatic numbers and invariants of hereditary graph propertiesDorfling, Samantha 06 December 2011 (has links)
D. Phil (Mathematics) / In this thesis we investigate generalized chromatic numbers in the context of hereditary graph properties. We also investigate the general topic of invariants of graphs as well as graph properties. In Chapter 1 we give relevant definitions and terminology pertaining to graph properties. In Chapter 2 we investigate generalized chromatic numbers of some well-known additive hereditary graph properties. This problem necessitates the investigation of reducible bounds. One of the results here is an improvement on a known upper bound for the path partition number of the property Wk. We also look at the generalized chromatic number of infinite graphs and hereby establish the connection between the generalized chromatic number of properties and infinite graphs. In Chapter 3 the analogous question of the generalized edge-chromatic number of some well-known additive hereditary properties is investigated. Similarly we find decomposable bounds and are also able to find generalized edge-chromatic numbers of properties using some well-known decomposable bounds. In Chapter 4 we investigate the more general topic of graph invariants and the role they play in chains of graph properties and then conversely the invariants that arise from chains of graph properties. Moreover we investigate the effects on monotonicity of the invariants versus heredity and additivity of graph properties. In Chapter 5 the general topic of invariants of graph properties defined in terms of the set of minimal forbidden subgraphs of the properties is studied. This enables us to investigate invariants so defined on binary operations between graph properties. In Chapter 6 the notion of natural and near-natural invariants are introduced and are also studied on binary operations of graph properties. The set of minimal forbidden subgraphs again plays a role in the definition of invariants here and this then leads us to study the completion number of a property.
|
79 |
Geometric invariants of systems of matricesCook, R. J. January 1967 (has links)
No description available.
|
80 |
The theory of conditional invarianceJoseph, Anthony January 1967 (has links)
No description available.
|
Page generated in 0.0703 seconds