• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Analysis of Yearly Differences in Snowpack Inventory-Prediction Relationships

Ffolliott, Peter F., Thorud, David B., Enz, Richard W. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / Inventory-prediction relationships between snowpack conditions and forest attributes may be useful in estimating water yields derived from snow, but such relationships are developed usually from source data collected over a short time period. Analyses of long-term data suggest inventory-prediction relationships developed from limited data may have more general application, however. Available records from 18 snow courses in the ponderosa pine type in Arizona provided source data in this study, which was designed to empirically analyze inventory-prediction relationships developed from long-term snow survey records. The primary hypothesis tested and evaluated by statistically analyzing the family of regression equations representing a snow course, was that, given a precipitation input, the distribution of snowpack water equivalent at peak seasonal accumulation is determined by the spatial arrangement of the forest cover, e.g. basal area. Generally 12 of the 18 snow courses evaluated appeared to support the hypothesis, three courses did not, and three courses were considered inconclusive.

Page generated in 0.1035 seconds