Spelling suggestions: "subject:"inverse QSAR"" "subject:"lnverse QSAR""
1 |
Kernel Methods in Computer-Aided Constructive Drug DesignWong, William Wai Lun 04 May 2009 (has links)
A drug is typically a small molecule that interacts with the binding site of some
target protein. Drug design involves the optimization of this interaction so that the
drug effectively binds with the target protein while not binding with other proteins
(an event that could produce dangerous side effects). Computational drug design
involves the geometric modeling of drug molecules, with the goal of generating
similar molecules that will be more effective drug candidates. It is necessary that
algorithms incorporate strategies to measure molecular similarity by comparing
molecular descriptors that may involve dozens to hundreds of attributes. We use
kernel-based methods to define these measures of similarity. Kernels are general
functions that can be used to formulate similarity comparisons.
The overall goal of this thesis is to develop effective and efficient computational
methods that are reliant on transparent mathematical descriptors of molecules with
applications to affinity prediction, detection of multiple binding modes, and generation
of new drug leads. While in this thesis we derive computational strategies for
the discovery of new drug leads, our approach differs from the traditional ligandbased
approach. We have developed novel procedures to calculate inverse mappings
and subsequently recover the structure of a potential drug lead. The contributions
of this thesis are the following:
1. We propose a vector space model molecular descriptor (VSMMD) based on
a vector space model that is suitable for kernel studies in QSAR modeling.
Our experiments have provided convincing comparative empirical evidence
that our descriptor formulation in conjunction with kernel based regression
algorithms can provide sufficient discrimination to predict various biological
activities of a molecule with reasonable accuracy.
2. We present a new component selection algorithm KACS (Kernel Alignment
Component Selection) based on kernel alignment for a QSAR study. Kernel
alignment has been developed as a measure of similarity between two kernel
functions. In our algorithm, we refine kernel alignment as an evaluation tool,
using recursive component elimination to eventually select the most important
components for classification. We have demonstrated empirically and proven
theoretically that our algorithm works well for finding the most important
components in different QSAR data sets.
3. We extend the VSMMD in conjunction with a kernel based clustering algorithm
to the prediction of multiple binding modes, a challenging area of
research that has been previously studied by means of time consuming docking
simulations. The results reported in this study provide strong empirical
evidence that our strategy has enough resolving power to distinguish multiple
binding modes through the use of a standard k-means algorithm.
4. We develop a set of reverse engineering strategies for QSAR modeling based
on our VSMMD. These strategies include:
(a) The use of a kernel feature space algorithm to design or modify descriptor
image points in a feature space.
(b) The deployment of a pre-image algorithm to map the newly defined
descriptor image points in the feature space back to the input space of
the descriptors.
(c) The design of a probabilistic strategy to convert new descriptors to meaningful
chemical graph templates.
The most important aspect of these contributions is the presentation of strategies that actually generate the structure of a new drug candidate. While the training
set is still used to generate a new image point in the feature space, the reverse engineering
strategies just described allows us to develop a new drug candidate that is
independent of issues related to probability distribution constraints placed on test
set molecules.
|
2 |
Kernel Methods in Computer-Aided Constructive Drug DesignWong, William Wai Lun 04 May 2009 (has links)
A drug is typically a small molecule that interacts with the binding site of some
target protein. Drug design involves the optimization of this interaction so that the
drug effectively binds with the target protein while not binding with other proteins
(an event that could produce dangerous side effects). Computational drug design
involves the geometric modeling of drug molecules, with the goal of generating
similar molecules that will be more effective drug candidates. It is necessary that
algorithms incorporate strategies to measure molecular similarity by comparing
molecular descriptors that may involve dozens to hundreds of attributes. We use
kernel-based methods to define these measures of similarity. Kernels are general
functions that can be used to formulate similarity comparisons.
The overall goal of this thesis is to develop effective and efficient computational
methods that are reliant on transparent mathematical descriptors of molecules with
applications to affinity prediction, detection of multiple binding modes, and generation
of new drug leads. While in this thesis we derive computational strategies for
the discovery of new drug leads, our approach differs from the traditional ligandbased
approach. We have developed novel procedures to calculate inverse mappings
and subsequently recover the structure of a potential drug lead. The contributions
of this thesis are the following:
1. We propose a vector space model molecular descriptor (VSMMD) based on
a vector space model that is suitable for kernel studies in QSAR modeling.
Our experiments have provided convincing comparative empirical evidence
that our descriptor formulation in conjunction with kernel based regression
algorithms can provide sufficient discrimination to predict various biological
activities of a molecule with reasonable accuracy.
2. We present a new component selection algorithm KACS (Kernel Alignment
Component Selection) based on kernel alignment for a QSAR study. Kernel
alignment has been developed as a measure of similarity between two kernel
functions. In our algorithm, we refine kernel alignment as an evaluation tool,
using recursive component elimination to eventually select the most important
components for classification. We have demonstrated empirically and proven
theoretically that our algorithm works well for finding the most important
components in different QSAR data sets.
3. We extend the VSMMD in conjunction with a kernel based clustering algorithm
to the prediction of multiple binding modes, a challenging area of
research that has been previously studied by means of time consuming docking
simulations. The results reported in this study provide strong empirical
evidence that our strategy has enough resolving power to distinguish multiple
binding modes through the use of a standard k-means algorithm.
4. We develop a set of reverse engineering strategies for QSAR modeling based
on our VSMMD. These strategies include:
(a) The use of a kernel feature space algorithm to design or modify descriptor
image points in a feature space.
(b) The deployment of a pre-image algorithm to map the newly defined
descriptor image points in the feature space back to the input space of
the descriptors.
(c) The design of a probabilistic strategy to convert new descriptors to meaningful
chemical graph templates.
The most important aspect of these contributions is the presentation of strategies that actually generate the structure of a new drug candidate. While the training
set is still used to generate a new image point in the feature space, the reverse engineering
strategies just described allows us to develop a new drug candidate that is
independent of issues related to probability distribution constraints placed on test
set molecules.
|
3 |
Novel Methods for Chemical Compound Inference Based on Machine Learning and Mixed Integer Linear Programming / 機械学習と混合整数線形計画法に基づく新しい化合物推定手法Zhu, Jianshen 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24938号 / 情博第849号 / 新制||情||142(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)准教授 原口 和也, 教授 山下 信雄, 教授 阿久津 達也 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
4 |
Cartography of chemical space / Cartographie de l'espace chimiqueGaspar, Héléna Alexandra 29 September 2015 (has links)
Cette thèse est consacrée à la cartographie de l’espace chimique ; son but est d’établir les bases d’un outil donnant une vision d’ensemble d’un jeu de données, comprenant prédiction d’activité, visualisation, et comparaison de grandes librairies. Dans cet ouvrage, nous introduisons des modèles prédictifs QSAR (relations quantitatives structure à activité) avec de nouvelles définitions de domaines d’applicabilité, basés sur la méthode GTM (generative topographic mapping), introduite par C. Bishop et al. Une partie de cette thèse concerne l’étude de grandes librairies de composés chimiques grâce à la méthode GTM incrémentale. Nous introduisons également une nouvelle méthode « Stargate GTM », ou S-GTM, permettant de passer de l’espace des descripteurs chimiques à celui des activités et vice versa, appliquée à la prédiction de profils d’activité ou aux QSAR inverses. / This thesis is dedicated to the cartography of chemical space; our goal is to establish the foundations of a tool offering a complete overview of a chemical dataset, including visualization, activity prediction, and comparison of very large datasets. In this work, we introduce new QSAR models (quantitative structure-activity relationship) based on the GTM method (generative topographic mapping), introduced by C. Bishop et al. A part of this thesis is dedicated to the visualization and analysis of large chemical libraries using the incremental version of GTM. We also introduce a new method coined “Stargate GTM” or S-GTM, which allows us to travel from the space of chemical descriptors to activity space and vice versa; this approach was applied to activity profile prediction and inverse QSAR.
|
Page generated in 0.0438 seconds