• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transgenic expression of molt-inhibiting hormone from white shrimp (penaeus vannamei) in tobacco.

January 2001 (has links)
by Fong Man Kim. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 127-137). / Abstracts in English and Chinese. / Thesis committee --- p.i / Acknowledgements --- p.ii / Abstract --- p.iii / List of figures --- p.viii / List of tables --- p.xi / Abbreviations --- p.xii / Table of contents --- p.xiv / Chapter CHAPTER 1 --- GENERAL INTRODUCTION --- p.1 / Chapter CHAPTER 2 --- LITERATURE REVIEW --- p.3 / Chapter 2.1 --- MIH from Penaeus vannamei --- p.3 / Chapter 2.1.1 --- General Introduction to P. vannamei --- p.3 / Chapter 2.1.1.1 --- Morphology --- p.3 / Chapter 2.1.1.2 --- Geographical distribution --- p.5 / Chapter 2.1.1.3 --- Economic value --- p.5 / Chapter 2.1.2 --- Physiology of Molting in Crustacean --- p.7 / Chapter 2.1.2.1 --- The molt cycle --- p.7 / Chapter 2.1.2.2 --- Physiological effects of ecdysone --- p.8 / Chapter 2.1.2.3 --- Regulation of the secretion of ecdysone --- p.9 / Chapter 2.1.2.4 --- Physiological effects of Molt-inhibiting hormone --- p.10 / Chapter 2.1.3 --- Cloning of MIH cDNA from P. vannamei --- p.14 / Chapter 2.1.3.1 --- Molecular identity of MIH --- p.14 / Chapter 2.1.3.2 --- Cloning of MIH cDNA --- p.15 / Chapter 2.1.3.3 --- Comparison of the cloned MIH-like cDNA with the CHH/MIH/VIH peptide family --- p.16 / Chapter 2.2 --- Plants as Bioreactors --- p.20 / Chapter 2.2.1 --- Principles & Techniques --- p.20 / Chapter 2.2.2 --- Advantages of plant bioreactors --- p.21 / Chapter 2.2.3 --- Tobacco expression system --- p.22 / Chapter 2.2.3.1 --- Tobacco as model plants --- p.22 / Chapter 2.2.3.2 --- Transformation methods --- p.23 / Chapter 2.2.4 --- Phaseolin --- p.26 / Chapter CHAPTER 3 --- EXPRESSION OF MIH IN TRANSGENIC TOBACCO --- p.28 / Chapter 3.1 --- Introduction --- p.28 / Chapter 3.2 --- Materials & Methods --- p.29 / Chapter 3.2.1 --- Chemicals --- p.29 / Chapter 3.2.2 --- Plant materials --- p.29 / Chapter 3.2.3 --- Bacterial strains and plasmid vectors --- p.30 / Chapter 3.2.4 --- Construction of chimeric genes - --- p.30 / Chapter 3.2.4.1 --- PCR amplification of MIH --- p.30 / Chapter 3.2.4.2 --- Cloning of PCR-amplified MIH into vector pET --- p.31 / Chapter 3.2.4.3 --- Cloning of MIH into vector pBK/Phas-sp and pTZ/Phas --- p.31 / Chapter 3.2.4.4 --- Cloning of MIH into binary vector pBI121 --- p.32 / Chapter 3.2.5 --- Transformation of Agrobacterium with pBI121/Phas-sp-MIH and pBI121 /Phas-MIH by electroporation --- p.39 / Chapter 3.2.6 --- Transformation of tobacco --- p.40 / Chapter 3.2.7 --- Selection of transgenic plants --- p.41 / Chapter 3.2.8 --- GUS assay --- p.42 / Chapter 3.2.9 --- Extraction of leaf genomic DNA --- p.43 / Chapter 3.2.10 --- Extraction of total RNA from developing seeds --- p.44 / Chapter 3.2.11 --- Synthesis of DIG-labeled DNA and RNA probes --- p.45 / Chapter 3.2.12 --- Southern blot analysis of genomic DNA --- p.47 / Chapter 3.2.13 --- Reverse transcriptase - polymerase chain reaction (RT-PCR) --- p.47 / Chapter 3.2.14 --- Northern blot analysis of total RNA --- p.48 / Chapter 3.2.15 --- Protein extraction and tricine-SDS-PAGE --- p.49 / Chapter 3.2.16 --- Purification of 6xHis-tag proteins --- p.50 / Chapter 3.2.17 --- Western blot analysis --- p.50 / Chapter 3.2.18 --- In vitro transcription & translation --- p.52 / Chapter 3.2.18.1 --- Construction of transcription vector containing the chimeric MIH gene --- p.52 / Chapter 3.2.18.2 --- In vitro transcription --- p.56 / Chapter 3.2.18.3 --- In vitro translation --- p.56 / Chapter 3.2.19 --- Particle bombardment --- p.57 / Chapter 3.2.19.1 --- Construction of MIH-GUSN fusion chimeric genes --- p.57 / Chapter 3.2.19.2 --- Conditions of particle bombardment --- p.63 / Chapter 3.2.20 --- Codon modification of MIH gene --- p.63 / Chapter 3.3 --- Results --- p.73 / Chapter 3.3.1 --- Construction of chimeric MIH genes --- p.73 / Chapter 3.3.2 --- "Tobacco transformation, selection and regeneration" --- p.73 / Chapter 3.3.3 --- Detection of GUS activity --- p.74 / Chapter 3.3.4 --- Southern blot analysis --- p.79 / Chapter 3.3.5 --- Detection of MIH transcript in transgenic tobacco --- p.83 / Chapter 3.3.5.1 --- RT-PCR --- p.83 / Chapter 3.3.5.2 --- Northern blot analysis --- p.86 / Chapter 3.3.6 --- Detection of MIH protein by Tricine-SDS-PAGE --- p.86 / Chapter 3.3.7 --- Detection of MIH protein by western blot analysis --- p.88 / Chapter 3.3.7.1 --- Western blot analysis using Anti-MIH antibody --- p.88 / Chapter 3.3.7.2 --- Western blot analysis using Anti-His antibody --- p.90 / Chapter 3.3.7.3 --- Western blot analysis using Anti-MIHA & Anti-MIHB antibodies --- p.90 / Chapter 3.3.8 --- Purification of 6xHis-tag proteins by Ni-NTA column --- p.94 / Chapter 3.3.8.1 --- Western blot analysis of proteins purified by Ni-NTA column --- p.97 / Chapter 3.3.9 --- In vitro transcription and translation --- p.100 / Chapter 3.3.9.1 --- In vitro transcription --- p.100 / Chapter 3.3.9.2 --- In vitro translation --- p.100 / Chapter 3.3.10 --- Particle bombardments --- p.103 / Chapter 3.3.10.1 --- Transient expression of MIH in soybean & tobacco leaves --- p.103 / Chapter CHAPTER 4 --- DISCUSSION --- p.107 / Chapter 4.1 --- Transient expression of MIH genes --- p.109 / Chapter 4.1.1 --- In vitro transcription and translation --- p.109 / Chapter 4.1.2 --- Particle bombardments --- p.220 / Chapter 4.2 --- Post-transcriptional gene silencing (PTGS) --- p.114 / Chapter 4.2.1 --- Post-transcriptional cis-inactivation --- p.114 / Chapter 4.2.2 --- Post-transcriptional trans-inactivation --- p.116 / Chapter 4.2.3 --- MIH gene and PTGS --- p.118 / Chapter 4.3 --- Codon usage --- p.119 / Chapter 4.3.1 --- Codon usage of MIH in plants --- p.120 / Chapter 4.3.2 --- Codon modification of MIH and further study on MIH expression in plants --- p.122 / Chapter 4.4 --- Post-translational protein degradation --- p.123 / Chapter 4.4.1 --- Construction of LRP-MIH fusion proteins --- p.123 / CONCLUSION --- p.125 / REFERENCES --- p.127

Page generated in 0.0552 seconds