1 |
Using deep learning for IoT-enabled smart camera: a use case of flood monitoringMishra, Bhupesh K., Thakker, Dhaval, Mazumdar, S., Simpson, Sydney, Neagu, Daniel 15 July 2019 (has links)
Yes / In recent years, deep learning has been increasingly used for several applications such as object analysis, feature extraction and image classification. This paper explores the use of deep learning in a flood monitoring application in the context of an EC-funded project, Smart Cities and Open Data REuse (SCORE). IoT sensors for detecting blocked gullies and drainages are notoriously hard to build, hence we propose a novel technique to utilise deep learning for building an IoT-enabled smart camera to address this need. In our work, we apply deep leaning to classify drain blockage images to develop an effective image classification model for different severity of blockages. Using this model, an image can be analysed and classified in number of classes depending upon the context of the image. In building such model, we explored the use of filtering in terms of segmentation as one of the approaches to increase the accuracy of classification by concentrating only into the area of interest within the image. Segmentation is applied in data pre-processing stage in our application before the training. We used crowdsourced publicly available images to train and test our model. Our model with segmentation showed an improvement in the classification accuracy. / Research presented in this paper is funded by the European Commission Interreg project Smart Cities and Open Data REuse (SCORE).
|
Page generated in 0.0379 seconds