• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of ion bombardment on the chemical reactivity of GaAs(100)

Epp, June Miriam January 1989 (has links)
The effects of ion bombardment on the chemical reactivity of GaAs(100) were investigated by X-ray photoelectron spectroscopy. The enhancement in reactivity was shown to be related to the energy and mass of the bombarding ion. The oxidation results were compared to chemically cleaned (1:1 HCI(conc)/H₂O) and IHT (simultaneous ion/heat treatment) prepared GaAs(100). Before ion bombardment, GaAs(100) was chemically cleaned with 1:1 HCI(conc)/H₂O to remove surface oxides. Chemically cleaned GaAs was bombarded with 0.5-3 KeV Ar⁺ ions (fluences = 10¹⁶-10¹⁷ ions/cm²) and with 3 KeV Xe⁺, Ar⁺, ²⁰Ne⁺, and ³He⁺ ions (fluence =10¹⁷ ions/cm²) to investigate the effect of ion bombardment energy and mass on chemical reactivity. Ion bombardment results in the preferential sputtering of As and the amount of As depletion is dependent upon ion bombardment energy and mass. Following chemical cleaning and ion bombardment, GaAs was exposed to 10⁷-10¹³ L O2, 10⁹-10¹³ L H₂O,10⁶-10⁸ L NO, and 10⁷-10¹¹ L N₂O (1 Langmuir (L) = 1.3x10⁻⁴ Pa•sec). Chemically cleaned GaAs produced equivalent amounts of Ga₂O₃ and As₂O₃ upon O₂ exposure. Oxygen exposure of ion bombarded GaAs resulted in the formation of Ga₂O₃, As₂O₃, and As₂O₅. Nitric oxide exposure produced Ga₂O₃ and As₂O₃, and N₂O exposure produced only Ga₂O₃. Gallium oxide was preferentially formed for ion bombarded material and the relative amount of Ga₂O₃ increased with increasing ion energy. 3 KeV Xe⁺ ion-bombarded GaAs exhibited the greatest reactivity to O₂ and NO. Exposure of ion bombarded GaAs to NO produced the greatest amounts of Ga₂O₃. Ion bombarded GaAs was the least reactive to N₂O. Exposure of ion bombarded GaAs to H₂O resulted in the formation of GaOOH and Ga(OH)₃, with Ga(OH)₃ formation occurring only on 2 KeV Ar⁺ and 3 KeV Ar⁺ and Xe⁺ ion-bombarded material at exposures above 10¹⁰ L. It was shown that defects were responsible for the increased reactivity and that preferential formation of Ga₂O₃ on ion bombarded material was not determined by the Ga/As surface ratio. Exposing IHT prepared GaAs to O₂ produced equivalent amounts of Ga₂O₃ and As₂O₃ when the Ga/As ratio was 1.23±0.07. The damage caused by ion bombardment was investigated by optical reflectivity in the visible and near-ultraviolet region (1.6-5.6 eV), Raman spectroscopy, and capacitance-voltage measurements. Ion bombardment forms a damaged layer that is amorphous. The depth of damage is proportional to the energy of the bombarding ion and inversely proportional to the mass of the bombarding ion. The shallow damage depth for 3 KeV Xe⁺ ion-bombarded GaAs offers some explanation for increased chemical reactivity. The increased reactivity of ion bombarded GaAs with O₂ and NO is attributed to surface defects (broken surface bonds). It is suggested that these broken bonds are in the form of singly occupied dangling bonds. A model for the surface and possible reaction pathways for O₂ and NO reactions are discussed. / Ph. D.
2

Optical thin films prepared by ion-assisted and ultrasound-assisted deposition.

Hwangbo, Chang Kwon. January 1988 (has links)
Optical, electrical, and microstructural effects of Ar ion bombardment and Ar incorporation on thermally evaporated Ag and Al thin films were investigated. The results show that as the momentum supplied to the growing films by the bombarding Ar ions per arriving metal atom increases, refractive index at 632.8 nm increases and extinction coefficient decreases, lattice spacing expands, grain size decreases, electrical resistivity increases, and trapped Ar increases slightly. In Ag films, stress reverses from tensile to compressive; in AI films compressive stress increases. In both films, the change in optical constants can be explained by variation in void volume. The reversal of stress from tensile to compressive in Ag films requires a threshold level of momentum. The increase in electrical resistivity is related to the increase in the void fraction, decrease in the grain size, and increase in trapped Ar in both types of films. Many of these properties correlate well with the momentum transferred, suggesting that the momentum is an important physical parameter in describing the influence of ion beams on growing thin films and determining the characteristics of thin metal films prepared by ion-assisted deposition (IAD). With a low energy ion beam, the Ar concentration in IAD Ag films was negligible. When the bombarded film thickness was less than 5 nm, the electrical resistivity of IAD Ag films tended to decrease slightly from that of the non-IAD film. Using the Bruggeman effective medium theory, a formula for the void fraction at any given wavelength was derived. We investigated optical properties, stoichiometry, chemical bonding states, and structure of aluminum oxynitride thin films prepared by reactive ion-assisted deposition. Variations of optical constants and chemical bonding states are related to the stoichiometry. We found that our amorphous aluminum oxynitride film is not simply a mixture of aluminum oxide and nitride but a compound. A rugate filter using a step-index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfilled oxygen pressure as the sole variable. The effects of ultrasound-assisted deposition (UAD) on the optical properties of ZrO₂, Ta₂O₅, and MgF₂ films were investigated. UAD is likely to induce oxygen and fluoride deficiencies in oxide and fluoride films and increase the packing density of films.

Page generated in 0.098 seconds