• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 22
  • 18
  • 14
  • 9
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 323
  • 323
  • 36
  • 34
  • 34
  • 34
  • 33
  • 30
  • 30
  • 29
  • 29
  • 28
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Osmolality tolerance and ion channels in protoplasts of entomophthoralean fungi /

Lamb, Mary Patricia, January 1997 (has links)
Thesis (M. Sc.), Memorial University of Newfoundland, 1998. / Bibliography: leaves 154-166.
102

Gramicidin A and cyclic peptides channel conductances in black lipid membranes

Herasymova, Nataliya January 2010 (has links)
Honors Project--Smith College, Northampton, Mass., 2010. / Includes bibliographical references (p. 102-105).
103

Study of structure-function correlations in ion channels by solid state NMR

Mo, Yiming. Cross, Timothy A. January 2006 (has links)
Thesis (Ph. D.)--Florida State University, 2006. / Advisor: Timothy A. Cross, Florida State University, College of Arts and Sciences, Dept. of Chemistry and Biochemistry. Title and description from dissertation home page (viewed June 9, 2006). Document formatted into pages; contains xv, 98 pages. Includes bibliographical references.
104

The role of ion channels in gastric mucosal healing

Wu, Ka-kei. January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
105

Properties of conductance and inhibition of proton channel : M2 from influenza A virus and Fo from Escherichia coli ATP synthase /

Moffat, Jeffrey C., January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept of Physiology and Developmental Biology, 2006. / Includes bibliographical references.
106

Microfluidic elastomeric platforms for probing single cells /

Chen, Chih-chen, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 105-120).
107

Ion Channel Dynamics in Interneuron Models of the Cricket Cercal Sensory System

Eaton, Carrie Elizabeth Diaz January 2004 (has links) (PDF)
No description available.
108

Υπερέκφραση, απομόνωση και χαρακτηρισμός της εξωκυττάριας περιοχής ενός ιοντικού καναλιού ενεργοποιούμενου από τη δέσμευση ενός προσδέτη του βακτηρίου Gloeobacter violaceus της υπεροικογένειας των υποδοχέων Cys-θηλιάς

Αργυρίου, Αικατερίνη 08 May 2012 (has links)
Τα πενταμερή ιοντικά κανάλια που ενεργοποιούνται από τη δέσμευση ενός προσδέτη (pLGICs-pentameric Ligand Gated Ion Channels) της υπεροικογένειας των υποδοχέων Cys-θηλιάς είναι διαμεμβρανικές γλυκοπρωτεΐνες που εμπλέκονται σε ποικιλία βιολογικών λειτουργιών. Στην παρούσα εργασία παρουσιάζεται η NMR μελέτη της εξωκυττάριας περιοχής ενός προκαρυωτικού pLGIC, της GLIC (Gloeobacter ligand-gated ion channel), που προέρχεται από το κυανοβακτήριο Gloeobacter violaceus και εμφανίζεται ως μονομερές σε διάλυμα. / Pentameric ligand-gated ion channels (pLGICs) of the Cys loop family are transmembrane glycoproteins implicated in a variety of biological functions. Here, we present a solution NMR study of the extracellular domain of a prokaryotic pLGIC homologue from the bacterium Gloeobacter violaceus that is found to be a monomer in solution.
109

Towards ionic signal propagation

Sutherland, Todd 05 November 2018 (has links)
The components necessary to propagate a synthetic ionic signal are described, and experiments leading to the required experimental system are the focus of this work. Two thiol-derivatized fluorescent probe molecules were synthesized that balanced both electrochemical and fluorescent properties necessary for trace analysis. Self-assembled monolayers (SAMs) of 11-(1-1’-biphenyl-4-yloxy)-1-undecanethiol were formed on Au/glass slides by open-circuit incubation and potential-assisted adsorption methods. A potentiostat was built capable of producing current responses on the microsecond time-scale. Monolayer integrity was established by two methods: cyclic voltammetry and chronoamperometry. Monolayers formed under potential-assisted adsorption conditions showed attenuation of the peak current due to Fe(CN)6 3−/4− redox probe in cyclic voltammetry, indicating a tightly packed monolayer. Chronoamperometric studies also confirmed the monolayer integrity by fitting the current response of a potential-step to an equivalent circuit. The chronoamperometric study was dependent on solvent and electrolyte. In water, the difference between bare Au and monolayer protected Au was large, whereas in DMF, the difference was negligible. Likewise, the use of tetra-butyl ammonium hexafluorophosphate as the electrolyte showed little difference between bare Au and monolayer protected Au. The electrochemical reduction of the SAMs was done in various solvents and electrolytes and the products were analysed by HPLC with fluorescent detection. Along the series of solvents from water to MeCN to DMF the current efficiencies for release increased but still were very low. In water and MeCN, the thiol was the sole detectable product, while in DMF, the sole detected product was the disulfide. Reproducibility of release was poor in MeCN and water, probably due to the low solubility of the thiol. Single-channel analysis of two acyclic bola-amphiphiles (diester and diamide) was done to establish their feasibility as components of a synthetic signal propagation system. Channels from the diester derivative have a Na+ conductance of 10.2 pS and a Cs+ conductance of 39.3 pS. Channels from the diester have a Cs+/Na+ permeability ratio of 4.7, Cs+/Cl- permeability ratio of 7.5 and a Na+/Cl- permeability ratio of 3.1. Channels of the diester bola-amphiphile have two lifetimes; 117 ms and 842 ms at -100 mV, 1 M CsCl electrolyte and DiPhyPC lipid at 25 °C. Similarly, Channels from the diamide derivative have a Na+ conductance of 10.3 pS and a Cs+ conductance of 38.9 pS. Chaimels of the diamide have a Cs+/Na+ permeability ratio of 5.2, Cs+/Cl- permeability ratio of 7.2 and a Na+/Cl- permeability ratio of 2.1. The diamide bola-amphiphile channels have a lifetime of 277 ms at +100 mV, 1 M CsCl electrolyte and DiPhyPC lipid at 25 °C. Both channels show a regular non-uniform step-conductance pattern. The sublevel openings, when graphically represented with lifetime data, show the trend that the lower conductance states of one-level openings are also the shorter-lived channels. A traceless linker to release alcohols from a gold surface was developed. Thiobutyric acid was found to undergo intramolecular thiolactone formation after electrochemical reduction from an Au-electrode to liberate the alcohol. A thiobutyric ester at the C-terminus of gramicidin was synthesized. This compound released gramicidin by chemical reduction with DTT as seen by HPLC analysis and MALDI TOF MS. The electrochemical release of the Au-immobilized thiobutyric ester of gramicidin adjacent to a lipid bilayer, as monitored by bilayer clamp technique, produced an increase in channel activity that is consistent with incorporation of gramicidin. / Graduate
110

Nano-Bilayer Lipid Membranes Hosted on Biogenic Nanoporous Substrates

January 2015 (has links)
abstract: Engineered nanoporous substrates made using materials such as silicon nitride or silica have been demonstrated to work as particle counters or as hosts for nano-lipid bilayer membrane formation. These mechanically fabricated porous structures have thicknesses of several hundred nanometers up to several micrometers to ensure mechanical stability of the membrane. However, it is desirable to have a three-dimensional structure to ensure increased mechanical stability. In this study, circular silica shells used from Coscinodiscus wailesii, a species of diatoms (unicellular marine algae) were immobilized on a silicon chip with a micrometer-sized aperture using a UV curable polyurethane adhesive. The current conducted by a single nanopore of 40 nm diameter and 50 nm length, during the translocation of a 27 nm polystyrene sphere was simulated using COMSOL multiphysics and tested experimentally. The current conducted by a single 40 nm diameter nanopore of the diatom shell during the translocation of a 27 nm polystyrene sphere was simulated using COMSOL Multiphysics (28.36 pA) and was compared to the experimental measurement (28.69 pA) and Coulter Counting theory (29.95 pA).In addition, a mobility of 1.11 x 10-8 m2s-1V-1 for the 27 nm polystyrene spheres was used to convert the simulated current from spatial dependence to time dependence. To achieve a sensing diameter of 1-2 nanometers, the diatom shells were used as substrates to perform ion-channel reconstitution experiments. The immobilized diatom shell was functionalized using silane chemistry and lipid bilayer membranes were formed. Functionalization of the diatom shell surface improves bilayer formation probability from 1 out of 10 to 10 out of 10 as monitored by impedance spectroscopy. Self-insertion of outer membrane protein OmpF of E.Coli into the lipid membranes could be confirmed using single channel recordings, indicating that nano-BLMs had formed which allow for fully functional porin activity. The results indicate that biogenic silica nanoporous substrates can be simulated using a simplified two dimensional geometry to predict the current when a nanoparticle translocates through a single aperture. With their tiered three-dimensional structure, diatom shells can be used in to form nano-lipid bilayer membranes and can be used in ion-channel reconstitution experiments similar to synthetic nanoporous membranes. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015

Page generated in 0.0444 seconds