Spelling suggestions: "subject:"oon effects"" "subject:"soon effects""
1 |
Studying Specific Ion Effects on the Micellization of 1,2-HexanediolSorokina, Olga 18 December 2014 (has links)
Specific ion effects on protein interfaces have been observed for many years, but yet comprehensive explanations regarding the mechanism by which ions interact with proteins and more general aqueous interfaces are still under investigation. Realistically, ion specificity on protein stability is due to numerous contributions and interactions between the solution and protein. However, the most important contribution is arguably the hydrophobic effect, specifically the change in free energy when water molecules are liberated from the interfacial region upon protein folding. In the work presented here, the effects of different ions on the critical micelle concentration (CMC) of 1, 2 –Hexanediol were examined to study salt effects on hydrophobicity by the means of fluorescence spectroscopy. Our results show that anions and cations do exhibit the specific effects on hydrophobic interactions. However, the origin of these specific ion effects different for cations and anions. Cation specific effects are caused by their ability to form cavities in solution, while anion specific effects arise from their ability to interact with the interface. These results are of interest to the researchers in the protein folding field, providing significant experimental hydrophobicity data necessary for theoretical biologists that are attempting to predict protein structures. / February 2015
|
2 |
Vliv iontů a oxidace na hydrataci a pohyblivost modelových lipidových membrán. / The effects of ions and oxidation on hydration and mobility of model lipid membranes.Vojtíšková, Alžběta January 2011 (has links)
The presented thesis is a continuation of the bachelor work, in which the effects of monovalent ions on neutral model lipid membranes were characterized. Herein physical properties of physiologically relevant anionic membranes in the presence of monovalent cations and oxidized lipids were studied. Hydration and mobility of the lipid bilayer at glycerol level were investigated using fluorescent solvent relaxation technique. In the first part of this work the interactions of cations (Na+ , K+ , Cs+ ) with negatively charged POPC/POPS lipid mixture, which is a good model of inner leaflet of cellular membrane, were studied. The presence of cations resulted in dehydration and substantial hinderence of mobility of hydrated lipids at the glycerol level probed by Laurdan. Clear specificity of those effects, which correlated with Hofmeister series have been observed. In the second part of the work truncated oxidized phospholipids, oxPLs (PazePC, PoxnoPC, PGPC, POVPC), which are known to be important in pathophysiology of numerous diseases, were investigated. 10 mol% of each oxPL was incorporated into neutral and anionic lipid bilayers, the hydration and mobility of which were measured in water or in KCl solution. The results reveal complex interactions between oxPLs, negatively charged lipids, and K+ . In...
|
3 |
Quantitative Determination of Total Methamphetamine and Active Metabolites in Rat Tissue by Liquid Chromatography With Tandem Mass Spectrometric DetectionHendrickson, Howard, Laurenzana, Elizabeth, Owens, S. Michael 22 November 2006 (has links)
High-throughput liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) methodology for the determination of methamphetamine (METH), amphetamine (AMP), 4-hydroxymethamphetamine (4-OH-METH), and 4-hydroxyamphetamine (4-OH-AMP) was developed and validated using simple trichloroacetic acid sample treatment. The method was validated in rat serum, brain, and testis. Lower limits-of-quantitation (LOQ) for METH and AMP were 1 ng·mL-1 using positive ion electrospray tandem mass spectrometry (MS/MS). The accuracy of the method was within 25% of the actual values over a wide range of analyte concentrations. The within-assay precision was better than 12% (coefficient of variation). The method was linear over a wide dynamic range (0.3-1000 ng·mL-1). Quantitation was possible in all 3 matrices using only serum standards because of minimal matrix-associated ion effects or the use of an internal standard. Finally, the LC-MS/MS method was used to determine serum, brain, and testis METH and AMP concentrations during a subcutaneous infusion (5.6 mg kg-1 day-1) of METH in rats. Concentrations of 4-OH-AMP and 4-OH-METH were below the LOQ in experimental samples. The bias introduced by using serum calibrators for the determination of METH and AMP concentrations in testis and brain was less than 8% and insignificant relative to the interanimal variability.
|
4 |
Ion solvation in aqueous and non-aqueous solventsArslanargin, Ayse 12 October 2015 (has links)
No description available.
|
5 |
Characterizing Salinity Tolerance in Greenhouse RosesSolis Perez, Alma R. 2009 May 1900 (has links)
Among ornamental plants, roses (Rosa L.) are considered the most
economically important, being among the most popular garden shrubs, as well
as the favorite cut flowers sold by florists. In the past roses have been classified
as fairly salt-sensitive, however, recent nutrition studies suggest that they may
actually tolerate moderate to relatively high salinities. The general objective of
this research was to reassess the limits of tolerance to salinity of roses and the
influence of the rootstock used, to determine the ameliorative properties of
supplemental Ca2+ on the response to salt stress, and to establish the influence
of Na+- and Cl--counter ions on the detrimental effects caused by these
salinizing elements.
The NaCl or NaCl-CaCl2-salinity tolerance limit for greenhouse roses,
although greatly influenced by the rootstock, was between 12 and 15 mmol.L-1.
Plants grafted on ?Manetti? sustained their productivity/quality characteristics for
longer time periods, tolerated greater salinity concentrations, and accumulated
less Cl- and Na+ in leaves of flowering shoots than those grafted on ?Natal Briar?,
confirming the greater ability of the former rootstock to tolerate salt stress.
Supplementing the saline solution with 0-10 mmol.L-1 Ca2+ (as CaSO4) did
not alleviate the harmful effects caused by NaCl-salt stress (12 mmol.L-1) on the
productivity and quality responses of roses.
The detrimental effects caused by Na- and Cl-based salinity were greatly
influenced by the composition of the salt mixtures (i.e. their counter ions). Sodium sulfate and CaCl2 were the least harmful salts; NaCl had intermediate
effects, while NaNO3 and KCl were the most deleterious. Among the most
distinguishable effects caused by the more toxic Na+ and Cl- counter ions were
lower osmotic potential (piSS) and greater electrical conductivity (ECSS) of the
salinized solutions, markedly increased uptake and/or transport of either Na+ or
Cl- to the flowering shoot leaves, and altered uptake and/or transport of other
mineral nutrients.
Computations of the saline solutions? chemical speciation revealed that
salts containing divalent ions had lower ionization and exhibited greater ion
associations compared to monovalent ion salts, rendering a lower number in
free ions/molecules in solution which caused greater SS and lower ECSS in
those solutions.
|
6 |
Ions interacting with macromolecules : NMR studies in solutionFang, Yuan January 2017 (has links)
Specific ion effects, identified for more than hundred years, play an important role in a wide range of phenomena and applications. Several mechanisms such as direct ion interaction with molecules have been suggested to explain these effects, but quantitative experimental evidence remains scarce. Electrophoretic NMR (eNMR) has been emerging as a very powerful tool for studying molecular association and ionic transport in a variety of systems. Yet its potential in studying specific ion effect has been unexplored. In this thesis, eNMR was in part developed further as an analytical method and was in part used as one of the main techniques to study ions interacting with macromolecules in aqueous and non-aqueous solutions. The complexation of a large group of cations with poly ethylene oxide (PEO) in methanol was studied with eNMR. The binding of monovalent ions was demonstrated not to follow the Hofmeister order; multivalent cations except barium all showed negligible complexation. As a unifying feature, only cations with surface charge density below a threshold value were able to bind suggesting that ion solvation is critical. The binding mechanism was examined in greater detail for K+ and Ba2+ with oligomeric PEO of different chain lengths. Those two cations exhibited different binding mechanisms. K+ was found to bind to PEO by having at least 6 repeating units wrap around it while retaining the polymer flexibility. On the other hand, Ba2+ (and, to some extent, (BaAnion)+) needs a slightly shorter section to bind, but the molecular dynamics at the binding site slow considerably. The binding of anions with poly (N-isopropylacrylamide) in water was quantified at low salt concentration with eNMR and the binding affinity, though very weak, followed the Hofmeister order. This result indicates the non-electrostatic nature of this specific ion effects. The increase of binding strength with salt concentration is well described by a Langmuir isotherm. The specific ion binding to a protein, bovine serum albumin (BSA), was also studied at pH values where BSA has either net positive and negative charges. Our results show that anions have the same binding affinity irrespective of the surface charge while the binding strength of cations is reversed with the change in net surface charge. This indicates different binding mechanisms for cations and anions. The ionization of cellobiose in alkaline solutions was measured quantitatively by eNMR. The results show a two-step deprotonation process with increasing alkaline strength. Supported by results from 1H-13C HSQC NMR and MD simulation, ionization was proposed to be responsible for the improved solubility of cellulose in alkaline solution. eNMR was also used to characterize the effective charge of tetramethylammonium ions in a variety of solvents. In solvents of high polarity, the results agree well with predictions based on Onsager’s limiting law but for nonpolar solvents deviations were found that were attributed to ion pair formation. / <p>QC 20170216</p>
|
7 |
The study of phase separation in the miscibility gap and ion specific effects on the aggregation of soft matter system / L'étude de la séparation de phase dans une zone de miscibilité et des effets spécifiques des ions sur l’agrégation des colloïdes et des moussesZhang, Li 07 April 2016 (has links)
Le procédé de séparation de phase est importante car elle détermine la structure des matériaux finaux. Il existe de nombreux systèmes qui ont plus d'une phase tels que des mousses et des gels. Les mousses sont des dispersions aqueuses de bulles de gaz dans une phase aqueuse et gels apparaissent lorsque certains microscopique unité de base commence à se rassembler formant un grand réseau solide qui enjambe l'espace macroscopique. Ils ont de nombreuses applications dans l'industrie et la vie quotidienne. Dans cette thèse, tout d'abord, je me concentre sur l'étude de différents types de séparation de phase. Deuxièmement, je étudié les effets spécifiques d'ions sur l'agrégation des particules colloïdales et tensioactif, le but est de faire des mousses stables. Dans la lacune de miscibilité il existe deux types de séparation de phase: la croissance nucléation et la décomposition spinodale, ils ont différents mécanismes et de la cinétique de croissance. Par conséquent, mon premier projet est d'étudier le processus d'évolution d'eux et de leurs effets sur la structure finale du matériau. Les gels peuvent être préparés par l'ajout de sel à la dispersion de particules colloïdales, ils ont un grand nombre d'applications telles que dans les aliments et la science des matériaux. Dans cette thèse, nous utilisons différents types de sels de comparer les propriétés de gel à partir de deux aspects macroscopiques et microscopiques. Obtenir des mousses stables est significatif dans la vue de leur beaucoup d'applications, mais les moyens de les faire sont pour la plupart compliqué. Dans cette thèse, nous pouvons obtenir des mousses stables par l'intermédiaire de deux façons. On est tout simplement en ajoutant des sels de solutions de tensioactifs, à travers lequel nous pouvons faire la mousse ultra-stable. Une autre façon est d'utiliser la phase de gel, nous avons étudié en tant que phase continue dans les mousses à arrêter le vieillissement de la mousse. / Phase separation process is important as it determines the structure of the final materials. There are many systems that have more than one phase such as foams and gels. Aqueous foams are dispersions of gas bubbles in a water phase and gels appear when some basic microscopic unit starts to aggregate forming a large solid network that spans macroscopic space. They have many applications in industry and daily life. In the present thesis, firstly, I focus on studying different types of phase separation. Secondly, I studied the ion specific effects on the aggregation of colloidal particles and surfactant, the purpose is to make stable foams. In the miscibility gap there are two types of phase separation: Nucleation growth and spinodal decomposition, they have different growth mechanisms and kinetics. Therefore, my first p project is to investigate the evolution process of them and their effects to the final structure of material. Gels can be made by adding salt to the dispersion of colloidal particles, they have a large number of applications such as in food and material science. In this dissertation, we use different types of salts to compare gel properties from both macroscopic and microscopic aspects. Obtaining stable foams is significant in the view of their plenty of applications, but the ways to make them are mostly complicated. In this thesis, we can obtain stable foams via two ways. One is simply by adding salts to surfactant solutions, through which we can make ultrastable foam. Another way is using the gel phase we have studied as the continuous phase in foams to arrest the foam aging.
|
8 |
Quantum Simulations of Specific Ion Effects in Organic SolventsEisenhart, Andrew 05 October 2021 (has links)
No description available.
|
9 |
Local Structure and Interfacial Potentials in Ion SolvationPollard, Travis P. 15 June 2017 (has links)
No description available.
|
10 |
Extraction liquide-solide de cations métalliques par des cations amphiphiles / Liquid-solid extraction of cationic metals by cationic amphiphilesMüller, Wolfram 10 December 2010 (has links)
Dans le domaine de la séparation sélective pour le traitement et la valorisation des combustibles nucléaires usés, l'extraction liquide-liquide est largement utilisée au niveau industriel. Cependant dans le cadre des technologies nucléaires du futur, des procédés alternatifs de séparation sont recherchés. Notamment la précipitation sélective d'actinides par des tensioactifs cationiques en milieu aqueux (l'extraction liquide-solide étudié par Heckmann et al dans les années 80) apparaît comme une approche intéressante. Le principal avantage de cette technique, comparée à l'extraction liquide-liquide, est lié à la diminution du nombre d'étapes dans le processus comme le lavage du solvant ou la désextraction des métaux. De plus, c'est une technique sans solvant organique ce qui réduit considérablement la quantité de déchets contaminés. Pour ces travaux de thèse, nous avons utilisé des méthodes physico-chimiques pour mieux comprendre l'interaction spécifique entre le cation métallique et le tensioactif cationique. Nous avons tout d'abord analysé l'effet spécifique des contre-ions anioniques (Cl-, NO3-, C2O42-) provenant des acides utilisés; puis nous avons étudié finement l'introduction de cations alcalins monovalents et quelques cations multivalents sélectionnés (Cu2+, Zn2+, UO22+, Fe3+, Nd3+, Eu3+, Th4+) sur l'auto-assemblage et les propriétés structurels du tensioactif en variant les conditions thermodynamiques. Nous en avons conclu que l'adsorption d'un complexe anionique stable du métal, à l'interface des agrégats micellaires, influence fortement les paramètres d'agrégation du tensioactif et détermine ainsi les limites d'utilisation de cette technique de séparation. / In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX …) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl-, NO3-, C2O42-) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu2+, Zn2+, UO22+, Fe3+, Nd3+, Eu3+, Th4+) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration.
|
Page generated in 0.067 seconds