• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 14
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Peptides and proteins anti-virals to novel materials /

Miller, Scott A. January 2006 (has links)
Thesis (Ph. D. in Chemistry)--Vanderbilt University, May 2006. / Title from title screen. Includes bibliographical references.
52

Probing the local structure of pure ionic liquid salts with 35<superscript>Cl, 79<supercript>Br and 127<superscript>I solid state NMR /

Gordon, Peter George, January 1900 (has links)
Thesis (M. Sc.)--Carleton University, 2008. / Includes bibliographical references (p. 74-88). Also available in electronic format on the Internet.
53

Physical properties of aqueous solutions under high pressures and temperatures /

Wiryana, Surya. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [117]-123).
54

Development of quaternary ammonium based electrolytes for rechargeable batteries and fuel cells

Lang, Christopher M. January 2006 (has links)
Thesis (Ph. D.)--Chemical and Biomolecular Engineering, Georgia Institute of Technology, 2007. / Kohl, Paul, Committee Chair ; Bottomley, Lawrence, Committee Member ; Eckert, Charles, Committee Member ; Fuller, Tom, Committee Member ; Teja, Amyn, Committee Member.
55

Étude métrologique de solutions ioniques par spectrométrie Raman et analyses statistiques / Metrological study of ionic solutions by Raman spectrometry and statistical analysis

Kauffmann, Thomas H. 12 December 2016 (has links)
L’objectif de ce travail de recherche est d’étudier la possibilité d’utiliser la spectrométrie Raman dite "conventionnelle" pour l’analyse, voire le contrôle in situ de solutions ioniques et d'en déterminer les limites. Nous avons étudié différentes solutions salines, composées d'ions polyatomiques comme le nitrate (NO3-) donnant des raies Raman autour de 1000 cm-1, et d'ions halogénures (F-, Cl-, Br-, I-) qui ne possèdent pas de signature directe mais influencent de manière indirecte le spectre de l’eau. Les méthodologies proposées dans ce travail permettent une identification et une quantification des solutions salines et sont basées sur des analyses classiques de spectres à l'aide de pré-traitements (normalisation, correction de ligne de base). Les limites de détection des ions étudiés correspondent pour certains ions aux limites de potabilité de l’eau (nitrates et sulfates par exemple). D’autres substances restent impossibles à quantifier (nitrite, ammonium). Des méthodes statistiques ont ensuite été employées. Ainsi, l’analyse en composante principale (ACP) permet d’identifier la nature d’une solution saline, que l’ion présente une signature directe ou indirecte, et d'accéder aux arrangements moléculaires des ions avec l’eau. La régression PLS permet de quantifier les ions en solution à travers des modèles de prédiction. Cette méthode a été utilisée sur des solutions pures de nitrate et de chlorure avec des erreurs sur les prédictions en concentration 4 à 5 fois plus faibles que celles trouvées par les méthodes classiques. Ces méthodes statistiques ont également permis de descendre à des gammes de concentrations en ion Cl- beaucoup plus faibles (10-100 mM) / The objective of this research is to study the possibility of using conventional Raman spectroscopy for analysis, or in situ control of substances dissolved in water and to determine the limits of this technique. Several salt solutions were studied. Polyatomic ions such as nitrate (NO3-) give intense Raman lines around 1000 cm-1. Halide ions (F-, Cl-, Br-, I-) have no direct signature but indirectly affect the water spectrum. The methodology proposed in this work for identification and quantification of salt solutions is based on classical analysis of spectra using pre-treatment methods (normalization, baseline correction). The limits of detection of the studied ions correspond to the water potability limits. It is possible to go below the potability limits for nitrates and sulfates for example but it is impossible to reach them for some other substances (nitrite, ammonium). Then, statistical methods were used. Thus, the principal component analysis (PCA) allows to identify the nature of a salt solution (with direct or indirect signatures) and to acces to the molecular arrangements of ions with water. PLS regression quantifies the ions through predictive models. This method was used on pure solutions of nitrate and chloride with errors on the concentration predictions 4 to 5 times lower than those found by classical methods. Lower concentration ranges (10-100 mM) for the Cl- ion are reachable using these statistical methods
56

First Principles Calculations for Liquids and Solids Using Maximally Localized Wannier Functions

Swartz, Charles W. January 2014 (has links)
The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can be further engineered in the PbTiO 3 /SrTiO 3 superlattice and an interface enhancement of piezoelectricity is found in the BaTiO 3 /CaTiO 3 superlattice. The second project will look at The ionization potential distributions of hydrated hydroxide and hydronium which are computed within a many-body approach for electron excitations using configurations generated by ab initio molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by solvent water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions. The third project represents a work in progress, where we also make use of the previous electron excitation theory applied to ab initio x-ray emission spectroscopy. In this case we make use of a novel method to include the ultrafast core-hole electron dynamics present in such situations. At present we have shown only strong qualitative agreement with experiment. / Physics
57

Supported ionic liquid phase catalysis in continuous supercritical flow

Duque, Ruben January 2013 (has links)
The separation of the expensive catalysts from the solvent and reaction products remains one of the major disadvantages of homogeneous catalytic reactions, which are otherwise advantageous because of their high activity, tuneable selectivity and ease of study. Ideally, the homogeneous reactions would be carried out in continuous flow mode with the catalyst remaining in the reactor at all times, whilst the substrates and products flow over the catalyst. The system we have been studying is one where the catalyst is dissolved in a thin film of an ionic liquid, and this is supported within the pores of a microporous silica. This supported ionic liquid phase (SILP) catalyst is then placed in a tubular flow reactor, similar to that used for heterogeneous reactions. The raw materials are then injected into the rig, pass through the reactor and the products and the raw materials that have not reacted are collected at the other end of the rig. Supercritical CO₂ is used to transport the raw materials and products along the catalyst bed, allowing a continuous flow mode with low leaching for both the catalyst and the ionic liquid. We have applied this procedure first to alkene metathesis catalysed by a ruthenium complex that has been especially designed to dissolve in 1-butyl-3-methyimidazolium triflamide (BMIM NTf₂), which was used as ionic liquid. Activity is observed for the ring closing metathesis of diethyl 2,2-diallylmalonate, but the catalyst is not stable, only allowing about 300 turnovers. This instability is attributed to the formation of Ru=CH₂ moieties, which dimerise to an inactive species. More success is achieved with internal alkenes such as 2-octene and especially methyl oleate. Self metathesis of methyl oleate continues for >10.000 turnovers over 10 h, with only small decreases in activity. The cross metathesis of methyl oleate with dimethyl maleate has also been studied. Cross metathesis dominates in the early stages of the reaction but the cross metathesis products diminish with time. Surprisingly, the catalyst does not deactivate since self metathesis of methyl oleate continues. The phase behaviour of the reaction was monitored and gave us an insight into the reasons for this change in selectivity. Methoxycarbonylation reactions in continuous flow proved to be a much more difficult process than the previous metathesis reactions. Higher catalyst loading was needed to reduce the reaction times. The first continuous flow reactions showed conversion predominantly, if not exclusive, of 1-octene isomerised products. The presence of ionic liquid (IL) in the SILP system was essential, otherwise the catalyst leached out of the reactor very quickly. Batch reactions showed that none of the studied parameters (absence of presence of either BMIM NTf₂, OMIM NTf₂, silica or CO₂) had any influence on the reaction, but when observing the results it was noticed that the reactions that gave the best results were performed in a close range of pressures between 55 and 70 bar, indicating that the reaction might be pressure dependent. Further continuous flow reactions in that range of pressures gave the best conversions to methoxycarbonylation products. Unfortunately, at these pressures and without CO₂ the reaction took place in a liquid phase and thus substantial IL and catalyst leaching was observed, causing a decrease in conversion and making the reaction not feasible under continuous flow conditions. Nevertheless, the catalyst system composed of Pd, 1,2-bis(di-tert-butylphosphinomethyl)benzene (DTBPMB) ligand and acid showed an excellent linear selectivity, usually higher than 90%, both in batch and continuous flow reactions. Hydrogenation reactions of dimethyl itaconate (DMI) and dibutyl itaconate (DBI) using Rh-MeDuPhos showed excellent activity and enantioselestivity in a batch mode. In a continuous flow mode IL leaching caused a decrease of the enantioselectivity. The best results were obtained when CO₂ was not present. On the other hand, the absence of CO₂ implied that the reaction was performed in a liquid phase and therefore abundant IL leaching was observed along with a decrease in the enantioselectivity. A study of the reaction behaviour when using CO₂ in its different phases (liquid, gas and supercritical) was carried out. Under supercritical conditions IL leaching was avoided but conversion was not observed. When using CO₂ in its liquid phase some conversion was observed and full conversion occurred in its gas phase, but abundant IL leaching caused a decrease in the enantioselectivity. Better results were obtained by immobilising a Rh-MeDuPhos catalyst onto alumina via heteropoly acids. The effect of pressure, H₂ flow and substrate flow were studied and the stability of the reaction in the long term was examined under optimal conditions. More than 12,900 TONs were achieved after 4 days of continuous reaction, with conversions higher than 90% during the 3 first days and e.e. higher than 99% during the 2 first days.
58

The influence of ionic strength on the kinetics of selected enzymes.

Chuntharpursat, Eulashini. January 2005 (has links)
pH studies are used to gain insight into chemical mechanisms of enzyme catalysed reactions. However, perhaps the most important practical point that is often overlooked in pH studies is control of the ionic strength of reaction mixtures at the various pH values. For example, cathepsins Band L were suspected to be involved in cancer invasion but pH vs activity profiles indicated that they were not active at the extracellular pH (pH 7.2). When these profiles were re-evaluated in buffers of constant ionic strength, as opposed to buffers of constant molarity, it was shown that the enzymes were indeed active at pH 7.2. Other enzymes have also been reported to be sensitive to ionic strength. These include neutrophil elastase, class sigma glutathione S-transferase and penicillin G-acylase amongst others. The effects of increasing ionic strength on the activity of six enzymes were investigated. a-Glucosidase (from bakers ' yeast), elastase (human leukocyte) and trypsin (bovine pancreatic), cathepsin L (sheep liver), cathepsin B (rabbit liver), fruit bromelain (pineapple fruit) were subjected to different ionic strength buffers and their activities and Km and Vmax were determined as a function of ionic strength. The influence of ionic strength on Ki values has not been previously reported and was also studied, using the interaction between chicken egg-white cystatin C and cathepsin L as a model. a-Glucosidase was found to have an ionic strength optimum and elastase showed increasing activity with an increase in ionic strength. Trypsin activity decreased with increasing ionic strength with a substrate containing a positively charged side chain in the P1 position, and an increase in activity with a substrate containing a hydrophobic group at the P1 position. Cathepsin B activity increased when acting on the substrate Z-Phe-ArgNHMec and decreased when acting on Z-Arg-Arg-NHMec, with increasing ionic strength. Bromelain showed an increase in activity with increasing ionic strength. Cathepsin L activity decreased at increasing ionic strength and the Ki values for the cathepsin L-cystatin C interaction increased with increasing ionic strength. The results obtained can be attributed to the nature of the specificity pockets involved in binding the substrate, effects on the catalytic mechanism of the enzyme or structural changes due to increasing ionic strength. These results show that the ionic strength is a significant variable and should be kept constant or at in vivo levels when assaying enzymes. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
59

Sensing materials based on ionic liquids

Saheb, Amir Hossein 08 July 2008 (has links)
The first chapter of this thesis describes the motivation behind using room temperature ionic liquids (RTILs) in gas sensor research and reviews current applications of RTILs in various sensors. The second chapter describes electrochemical polymerization of aniline in room temperature 1-butyl-3-methylimmidazolium ionic liquids without addition of any acid. It is shown that the polymerization of aniline in BMI(BF4) does require small but controlled amounts of water whereas the polymerization in BMI(PF6) and in BMI(TF2N) does not require any water addition. The third chapter describes the construction of reference electrodes for RTIL applications that have a known and reproducible potential versus the ferrocene/ ferrocenium couple. They are based on reference electrodes of the first kind, Ag/Ag+ couple type, or of the second kind, based on Ag/AgCl in M+Cl-. The stability, reproducibility, and temperature behavior of the two reference systems have been characterized. The fourth chapter describes the electrochemical preparation and spectral analysis of gold clusters by adding gold atoms one-by-one through polyaniline s ability to form a strong complex with chloroaurate at the protonated imine sites. Our results confirm that both the amount and the size of gold clusters affects the properties of the composite material. The fifth chapter describes the development and characterization of a CHEMFET sensing layer based on a composite of CSA-doped polyaniline (PANI), and the room temperature ionic liquid BMI(TF2N) for the sensing of ammonia gas. The work function responses of the cast films with and without IL are analyzed by step-wise changes of ammonia gas concentration from 0.5 to 694 ppm in air as a function of the mole fraction of IL to PANI. The PANI CSA/BMI(TF2N) layers shows enhanced sensitivities, lower detection limit and shorter response times. The final chapter describes the preparation and characterization of field-effect transistors with mixed ionic-electronic conductors that have been created by varying the ratio of room temperature ionic liquid and emeraldine salt of polyaniline. Transistor with high electronic conductivity (32mol% ES-PANI) and Au gate contact exhibited theoretical behavior of an IGFET; whereas, the purely ionic gate behaved irreproducibly, indicating that a capacitive divider has been formed in the gate.
60

Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-Specific Abraham Parameter Model

Stephens, Timothy W. 12 1900 (has links)
Experimental data for the logarithm of the gas-to-ionic liquid partition coefficient (log K) have been compiled from the published literature for over 40 ionic liquids over a wide temperature range. Temperature independent correlations based on the Gibbs free energy equation utilizing known Abraham solvation model parameters have been derived for the prediction of log K for 12 ionic liquids to within a standard deviation of 0.114 log units over a temperature range of over 60 K. Temperature independent log K correlations have also been derived from correlations of molar enthalpies of solvation and molar entropies of solvation, each within standard deviations of 4.044 kJ mol-1 and 5.338 J mol-1 K-1, respectively. In addition, molar enthalpies of solvation and molar entropies of solvation can be predicted from the Abraham coefficients in the temperature independent log K correlations to within similar standard deviations. Temperature independent, ion specific coefficients have been determined for 26 cations and 15 anions for the prediction of log K over a temperature range of at least 60 K to within a standard deviation of 0.159 log units.

Page generated in 0.4693 seconds