• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding Charge Transport and Selectivitiy in Ionically Functionalized Fullerenes for Electron-Selective Interfacial Layers

Bradley, Colin 10 April 2018 (has links)
Significant improvements in power conversion efficiency (>10%) of emerging thin-film photovoltaics have been achieved in the last 5 years. High efficiencies would not be possible without the development of new selective interfacial layers. However, a complete understanding of how interfacial layers function to improve the selectivity of charge extracting contacts in thin-film photovoltaics is still being sought. The goal of this work is to contribute to the understanding of the operation of selective interfacial layers based on the study of ionically functionalized fullerenes. Just as other ionically functionalized materials have shown promise as electron-selective interfacial layers in organic photovoltaics and mixed organic-inorganic halide perovskites, Chapter II demonstrates the utility of ionically functionalized fullerenes. High performing solar cells necessitate the use of conductive interfacial layers; anomalously high conductivity in ionically functionalized materials, which have been used as interfacial layers, has been ascribed to self-doping. This work demonstrates that less than 1% of an ionically functionalized fullerene is reduced in its highly conductive pristine state and is concurrent with the presence of distinct chemical species. These studies describe how the chemical origin of the high conductivity of ionically functionalized fullerenes does not require the invocation of direct anion reduction or significant chemical transformations such as Hofmann-like elimination reactions occurring to a stoichiometric degree. This work also addresses the question of how the selectivity of a charge extracting contact is improved by the presence of an interfacial layer. The quantification of energy barrier reduction, which is often discussed in terms of work function modification or energy-level alignment, is demonstrated using metal|semiconductor junctions modified with an ionically functionalized fullerene. The barrier height of high work function electrodes was reduced significantly, by as much as 0.45 V, and was correlated to thin (2–5 nm) portions of the film rather than fullerene aggregates. The studies that comprise this work form a coherent model for understanding the key factors that have resulted in the continued use of ionically functionalized interfacial layers, their high conductivity, and energy barrier modification of the charge extracting electrodes. This dissertation contains coauthored, previously published, and unpublished work. / 10000-01-01
2

The Role of Ionic Functionality on Charge Injection Processes in Conjugated Polymers and Fullerenes

Weber, Christopher 17 June 2014 (has links)
Understanding the fundamental chemistry of conjugated polymers and fullerenes has been the subject of intense research for the last three decades, with the last ten years seeing increased research toward the application of these materials into functional organic electronic devices such as organic photovoltaic devices (OPVs). This field has seen significant advances is cell efficiency in just the last few years (to >10%), in large part due to the development of new donor and acceptor materials, the fine tuning of fabrication parameters to control material nanostructure, as well as the introduction of new interfacial materials such as ionically functionalized conjugated polymers, also known as conjugated polyelectrolytes (CPEs). This dissertation aims to further understand the fundamental chemistry associated with charge injection processes in CPEs and ionically functionalized fullerenes. The role of ionic functionality on electrochemical, chemical, and interfacial charge injection processes is explored. The results presented demonstrate the use of ionic functionality to control the spatial doping profile of a bilayer structure of anionically and cationically functionalized CPEs to fabricate a p-n junction (Chapter II). The role of ionic functionality on chemical charge injection processes is explored via the reaction of polyacetylene and polythiophene based CPEs with molecular oxygen (Chapters III and IV). The results show the dramatic effect of ionic functionality, as well as the specific role of the counterion, on the photooxidative stability of CPEs. The control of reaction pathway via counterion charge density is also explored (Chapter IV) and shows a continuum of reaction pathways based on the charge density of the counter cation. Finally, the role of ionic functionality on interfacial charge injection processes in a functional OPV is explored using a cationically functionalized fullerene derivative (Chapters V and VI). Cell performance increases due to an increase in open-circuit voltage and substantial reduction in series resistance resulting from the high conductivity of the interfacial fullerene layer. The chemical origin of this high conductivity is explored in Chapter VI and shown to likely be the result of chemical reactions occurring between the counter anion and the fullerene core. This dissertation contains coauthored, previously published and unpublished work.

Page generated in 0.1024 seconds