Spelling suggestions: "subject:"ionic solutions."" "subject:"sonic solutions.""
61 |
Properties of Liquid Water and Solvated Ions Based on First Principles CalculationsZheng, Lixin January 2018 (has links)
Water is of essential importance for life on earth, yet the physics concerning its various anomalous properties has not been fully illuminated. This thesis is dedicated to the understanding of liquid water from aspects of microscopic structures, dynamics, electronic structures, X-ray absorption spectra, and proton transfer mechanism. This thesis use the computational simulation techniques including density functional theory (DFT), ab initio molecular dynamics (AIMD), and theoretical models for X-ray absorption spectra (XAS) to investigate the dynamics and electronic structures of liquid water system. The topics investigated in this thesis include a comprehensive evaluation on the simulation of liquid water using the newly developed SCAN meta-GGA functional, a systematic modeling of the liquid-water XAS using advanced ab initio approaches, and an explanation for a long-puzzling question that why hydronium diffuses faster than hydroxide in liquid water. Overall, significant contributions have been made to the understanding of liquid water and ionic solutions in the microscopic level through the aid of ab initio computational modeling. / Physics
|
62 |
Processing of dissolving pulp in ionic liquidsTywabi, Zikhona January 2015 (has links)
Submitted in fulfillment of the requirements for the degree of Doctor of Technology: Chemistry, Durban University of Technology, Durban, South Africa, 2015. / This thesis forms part of the Council for Scientific and Industrial Research, Forestry and Forest Products Research Centre (CSIR-FFP) biorefinery project which aims at developing and implementing novel industrial processes production of cellulose textile fibres.
The focus of this study is to investigate the dissolution of South African Eucalyptus raw (unbleached) and final (bleached) dissolving pulp and saw dust wood in an ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate [Emim][OAc] and the co-solvents [dimethylsulfoxide (DMSO)] or [dimethylformamide (DMF)] mixtures, to obtain regenerated cellulose by the further addition of water and acetone.
The IL/co-solvent mixtures were able to dissolve the raw and final pulp samples at 120 ˚C for 6 hours whereas the sawdust wood dissolved in 10 hours. The IL/DMF mixture gave higher cellulose recoveries of 41.88 % for the raw pulp, 49.89 % for the final pulp sample and 32.50 % for sawdust wood while the IL/DMSO mixture gave a recovery of 15.25 % for the raw pulp sample, 36.25 % for the final pulp sample and 17.83 % for the sawdust wood sample.
The regenerated cellulose materials were characterized by Fourier Transformer Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Thermo gravimetric Analysis (TGA) and Powder X-Ray Diffraction (pXRD), and compared with a standard microcrystalline of cellulose. It was observed that the FTIR and NMR spectra of the regenerated cellulose and MCC were similar which then indicates that no chemical reaction occurred during the dissolution and regeneration process of cellulose. SEM and X-ray diffraction (XRD) patterns of the results showed that after dissolution the cellulose I (native form), the crystalline structure was completely converted into cellulose II (amorphous) structure, and this was due to the removal of lignin and decrease in cellulose crystallinity. TGA results showed that the regenerated cellulose samples have higher char yields compared to the MCC which is due to the IL remaining in the regenerated cellulose.
It was also observed that the addition of the co-solvents decreased the viscosity of the IL mixture, facilitating dissolution of the cellulose that led to additional swelling and reduction of the recalcitrant nature of the cellulose crystalline structure and intermolecular interactions. This led to increased accessibility and dissolution of the cellulose.
The findings in this study have the potential to bring ILs closer to applications for biomass technology in particular for an economically viable dissolution method for biomass because ILs have a benefit of being easily separated from the anti-solvent, which provides a simple solution for IL recycle ability and re-use.
The novel aspect of this study is:
. This is the first study in the South African context to examine the influence of the lignin on the dissolution and regeneration of Eucalyptus sawdust wood and dissolving pulp. / D
|
63 |
Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-Specific Abraham Parameter ModelStephens, Timothy W. 12 1900 (has links)
Experimental data for the logarithm of the gas-to-ionic liquid partition coefficient (log K) have been compiled from the published literature for over 40 ionic liquids over a wide temperature range. Temperature independent correlations based on the Gibbs free energy equation utilizing known Abraham solvation model parameters have been derived for the prediction of log K for 12 ionic liquids to within a standard deviation of 0.114 log units over a temperature range of over 60 K. Temperature independent log K correlations have also been derived from correlations of molar enthalpies of solvation and molar entropies of solvation, each within standard deviations of 4.044 kJ mol-1 and 5.338 J mol-1 K-1, respectively. In addition, molar enthalpies of solvation and molar entropies of solvation can be predicted from the Abraham coefficients in the temperature independent log K correlations to within similar standard deviations. Temperature independent, ion specific coefficients have been determined for 26 cations and 15 anions for the prediction of log K over a temperature range of at least 60 K to within a standard deviation of 0.159 log units.
|
64 |
Synthesis of lithium manganese phosphate by controlled sol-gel method and design of all solid state lithium ion batteriesPenumaka, Rani Vijaya January 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Due to the drastic increase in the cost of fossil fuels and other environmental issues, the demand for energy and its storage has risen globally. Rather than being dependent on intermittent energy sources like wind and solar energy, focus has been on alternative energy sources. To eliminate the need for fossil fuels, advances are being made to provide energy for hybrid electric vehicles (HEV), plug-in hybrid vehicles (PHEV) and pure electric vehicles (EV) thus providing scope for much greener environment. Hence, focus has been on development in lithium ion batteries to provide with materials that have high energy density and voltage.
Ortho olivine lithium transitional metals are known to be abundant and inexpensive; these compounds are less noxious than other cathode materials. Advancement in research is being done in finding iron and manganese compounds as cathode materials for advanced technologies. However, Lithium manganese phosphates are known to suffer with poor electrochemical performances due the manganese dissolution in the organic liquid electrolyte due to Jahn-Teller Lattice distortion. This problem was tried to endorse in this thesis. In the second chapter by synthesizing nano sized cathode particles with good electronic conductivity, good performance was achieved.
In the third chapter additive olivine cathode was synthesized my modified sol gel process. A wt. % of TMSP was added as an additive in the organic liquid electrolyte. By comparing the properties between the two kinds of electrolytes it was observed that by the addition of the additive in the organic electrolyte good electrochemical properties could be achieved hindering the Mn dissolution in the electrolyte.
In the final chapter, a composite solid electrolyte was fabricated by using NASICON-type glass ceramic of Lithium aluminum titanium phosphate (LATP) with organic binder of Polyethylene oxide. The flexible solid electrolyte exhibited good ionic conductivity. An all solid state cell was fabricated using the composite solid electrolyte using LiMn2O4 as the symmetric electrodes. At different pressures, the performance of the solid state cell was studied.
|
Page generated in 0.095 seconds