• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calibration d’un détecteur HVeV en utilisant des neutrons de 56 keV

De Brienne, François 08 1900 (has links)
L'un des grands mystères de la physique qu'il nous reste à élucider est d'identifier de quoi est composée la matière sombre. L'expérience SuperCDMS a décidé de se pencher sur la question il y a plus de 20 ans. Nous utilisons des détecteurs semi-conducteurs qui mesurent le signal de phonons engendré par des événements de recul.Nous mesurons également l'énergie déposée sous forme de d'ionisation à l'aide de l'effet Neganov-Trofimov-Luke (NTL) qui produit des phonons d'énergie totale proportionnelle à l'énergie d'ionisation initiale. Pour ce faire, nous appliquons un voltage sur le détecteur qui amplifie également le signal par un facteur proportionnel au voltage appliqué. Nous sommes allés à TUNL en Caroline du Nord, afin de calibrer notre détecteur HVeV fait d'un cristal de silicium. Le but de cette calibration est de déterminer le taux d'ionisation produit par des reculs nucléaires produits par le faisceau de neutrons fourni par TUNL. Cette mesure est importante puisque le taux d'ionisation est atténué pour le recul nucléaire par rapport au recul électronique et qu'il détermine l'amplification du signal par l'effet NTL. Nous avons utilisé des scintillateurs liquides couplés à des PMTs afin de déterminer l'énergie déposée dans le HVeV en les positionnant à des angles de diffusion précis. Nous avons jusqu'ici uniquement effectué l'analyse des données pour lesquelles il n'y a pas d'amplification NTL. Par conséquant, nous ne pouvons pas encore déterminer le taux d'ionisation. Cependant, nous concluons que notre méthode d'analyse est valide et que l'énergie déposée dans le HVeV est bien celle qui correspond aux angles de diffusion auxquels nous avions placé nos PMTs. / One of the biggest mysteries left to be solved in physics is the question of what dark matter is made of. The SuperCDMS experiment decided to explore this question and has done so for the last 20 years. We use semiconducting detectors that measure phonon signals generated by recoils. The HVeV detectors also use the Neganov-Trofimov-Luke (NTL) effect to generate a phonon signal proportional to the ionization signal that is also produced by the recoil. To do so, we apply a voltage bias the HVeV detector, which also amplify the signal by a factor proportional to the bias. We went to TUNL in North Carolina to calibrate our HVeV detector, made of a silicon crystal. The goal of the experiment is to determine the ionization yield of the nuclear recoil produced by the neutron beam provided to us by TUNL. This measurement is important since the ionization yield is dampened for nuclear recoil compared to electronic recoil and is linked to the gain of the signal in the HVeV. We use liquid scintillators coupled to PMTs to determine the energy deposited in the HVeV using the scattering angle between the HVeV and the chosen position of the PMTs. At this point, we only have the analyses for the data with no NTL gain, meaning that we do not yet have a measure for the ionization yield. Still, this analysis allowed us to validate our analysis method and the energy deposited in the HVeV for coincident events with PMTs of different position.
2

Production de plasmons et degré d’ionisation pour des reculs nucléaires dans les détecteurs de matière sombre au silicium de SuperCDMS

Michaud, Émile 08 1900 (has links)
SuperCDMS (Super Cryogenic Dark Matter Search) est une expérience de détection directe de la matière sombre qui utilise des détecteurs cryogéniques au silicium et au germanium capables de mesurer des dépôts d'énergie aussi petits que quelques eV. L'un des défis les plus importants de la recherche de la matière sombre est de réussir à bloquer les nombreux bruits de fond. Une de ces sources de bruit de fond est la production de plasmons par la diffusion Compton, un phénomène ne déposant généralement qu'une dizaine d’eV et affectant surtout les détecteurs à semi-conducteurs. Dans cet ouvrage, nous allons estimer le taux de production de ces plasmons et démontrer qu'il est primordial de tenir compte de ce bruit de fond avant de pouvoir affirmer avoir trouvé la matière sombre. Un autre enjeu majeur de SuperCDMS est l'étalonnage de ses détecteurs à très faible énergie. En effet, la matière sombre est supposée interagir avec le noyau des atomes. Toutefois, il n'existe présentement aucune donnée sur le degré d'ionisation pour des reculs nucléaires de moins de 0,7 keVnr dans le silicium, où keVnr représente l'énergie déposée en keV lors d'une collision nucléaire (nr). Dans la deuxième partie de cet ouvrage, nous allons montrer comment l'expérience IMPACT (Ionization Yield Measurement with Phonons At Cryogenic Temperature), une sous-expérience de SuperCDMS composée de membres de SuperCDMS, compte mesurer ce degré d'ionisation pour des reculs nucléaires entre 0,1 et 4 keVnr dans le silicium. Connaître ce degré d'ionisation est d'une grande importance pour SuperCDMS car il permet de reconstruire l'énergie déposée par une particule de matière sombre lorsqu'elle effectue une collision nucléaire dans ses détecteurs de matière sombre. / SuperCDMS (Super Cryogenic Dark Matter Search) is an experiment for the direct detection of dark matter that uses cryogenic silicon and germanium detectors which can measure energy deposition as low as a few eV. One of the biggest challenges in the search for dark matter is to block the various background events. One of those background source is the excitation of plasmons by Compton scattering, a phenomenon that generally deposits about ten eV and which affects mainly semiconductor detectors. In this work, we will estimate the production rate of plasmons and argue that we must understand this background in order to claim evidence of dark matter. One of SuperCDMS's other challenges is the calibration of its detectors at very low energy. Indeed, dark matter is known to interact with the atom's nucleus, but unfortunately, there is no data at the moment about the ionization yield of nuclear recoils below 0,7 keVnr in silicon, where keVnr is the energy deposited in keV in a nuclear recoil (nr). In the second part of this work, we will show how the IMPACT experiment (Ionization yield Measurement with Phonons At Cryogenic Temperature), a sub-experiment of SuperCDMS composed of members of SuperCDMS, aims to measure the ionization yield for nuclear recoils between 0,1 and 4 keVnr in silicon. It is important for SuperCDMS to know this ionization yield to reconstruct the energy deposited in their detectors by a nuclear recoil from a dark matter particle.

Page generated in 0.1132 seconds