• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and Detection of Ionospheric Depletions over the Indian Region in the Context of Satellite Navigation

Joshi, Prachi January 2013 (has links) (PDF)
Satellites have revolutionized navigation by making it more universal, accessible and ac- curate. Global Positioning System (GPS) is the most widely used satellite navigation system in the world. However, it is prone to errors from various sources such as the ionosphere, troposphere and clock biases. In order to make the system very accurate and reliable, especially to meet the requirements of safety-critical applications, Satellite Based Augmentation Systems (SBAS) have recently been designed in various countries to augment the GPS by providing corrections for its errors. An Indian SBAS called GAGAN (GPS Aided Geo Augmented Navigation), developed for the Airports Authority of India (AAI) by Indian Space Research Organization (ISRO) is currently being installed and proven for aviation and other use. The uncertain propagation delay of signals through the ionosphere is the most important contributor of error in GPS positioning, its maximal elimination is a major task of SBAS overlays. Ionospheric delays have steady, cyclic, and irregular components. The last types are of particular concern because they are unpredictable. This thesis deals with ionospheric depletion, an important phenomenon of this class that is specific to tropical regions like India and hence have not been well studied in the context of other SBAS systems of the world which cover mid-latitude domains. Depletion is an ionospheric phenomenon in which the density of electrons dips suddenly and then returns close to the previous value. It poses a challenge to the model adopted for ionospheric delay estimation since it may not be detectable by ground systems be- cause of its localized nature, and its occurrence and intensity cannot be predicted. In this work we have analyzed the depletion characteristics over the Indian region such as its distribution, frequency of occurrence, and depth and duration parameters. We have then studied and implemented an existing algorithm to detect a depletion from the Total Electron Content (TEC) data. This algorithm has been found to be inaccurate for estimation of depletion duration, and we have proposed an improved algorithm for depletion detection and shown it to be more suitable for the Indian SBAS, GAGAN. The algorithm utilizes multiple thresholds for depletion detection in order to improve performance in the presence of irregularities including noise. These thresholds are determined by analyzing real TEC data containing depletion events over the Indian region. The detected depletion events are those that have a strong likelihood of contributing large range errors and degrading GAGAN's reliability. The thresholds include depletion parameters such as the depth, duration, rate of change of TEC, and the rate of change of slope of the TEC curve. The characterization of depletion events over the Indian region yielded useful insights into the behaviour of the phenomenon. It was observed that the depletion events were invariably present post-sunset, between 1900 and 0200 hrs. This observation is consistent with the other studies on plasma bubbles so far. The average depth of the depletion was found to be about 3.31 meters of propagation delay while the strongest depletion corresponds to about 5.04 meters of delay. The latter observation impresses upon the need to detect and study the phenomenon of depletion since it is capable of causing a significant loss of accuracy and reliability to the system. The duration of the depletion was found to range from about 10 min to 2.35 hours. In addition, a statistical study of the relationship among the different parameters and a study devoted to now-casting of depletion was made to get a more quantitative insight into the phenomenon of depletion. Scintillation is another phenomenon occurring in the ionosphere which causes rapid fluctuations of phase and amplitude of the signal due to TEC variations in the ionosphere. The occurrences of depletion were observed to be accompanied by scintillation, as also noted in previous studies. The correlation of depletion and scintillation was studied using the data available for this research. A spatial characterization of the depletion events was also investigated using the same temporal TEC data from neighbouring stations which were relatively close to each other. This study addressed the movement of the plasma bubble with respect to the advection speed and direction with definite results. Attention was also devoted to the spatial dimension of the bubble as observed from various stations. Contributions to this variability in the apparent spatial extent comes from the observation of the depletion event from varying lines-of-sight corresponding to different GPS satellites which are also moving, and the differential `slicing' effect because of the location of the stations with respect to the plasma bubble, in addition to the evolution of the bubble during transit. The detection of depletion and its temporal characterization, in addition to the knowledge of its spatial extent and motion, can provide very useful insights on the behaviour of a depletion event and over the ionosphere in general. This knowledge and the mechanism for detection can help to improve the quality and dependability of the information provided by SBAS systems, in particular the Indian GAGAN system, for improved navigation in this part of the world. The present thesis aims to make a significant contribution in this direction.
2

Coupling of the solar wind, magnetosphere and ionosphere by MHD waves

Russell, Alexander J. B. January 2010 (has links)
The solar wind, magnetosphere and ionosphere are coupled by magnetohydrodynamic waves, and this gives rise to new and often unexpected behaviours that cannot be produced by a single, isolated part of the system. This thesis examines two broad instances of coupling: field-line resonance (FLR) which couples fast and Alfvén waves, and magnetosphere-ionosphere (MI-) coupling via Alfvén waves. The first part of this thesis investigates field-line resonance for equilibria that vary in two dimensions perpendicular to the background magnetic field. This research confirms that our intuitive understanding of FLR from 1D is a good guide to events in 2D, and places 2D FLR onto a firm mathematical basis by systematic solution of the governing equations. It also reveals the new concept of ‘imprinting’ of spatial forms: spatial variations of the resonant Alfvén wave correlate strongly with the spatial form of the fast wave that drives the resonance. MI-coupling gives rise to ionosphere-magnetosphere (IM-) waves, and we have made a detailed analysis of these waves for a 1D sheet E-region. IM-waves are characterised by two quantities: a speed v_{IM} and an angular frequency ω_{IM} , for which we have obtained analytic expressions. For an ideal magnetosphere, IM-waves are advective and move in the direction of the electric field with speed v_{IM}. The advection speed is a non-linear expression that decreases with height-integrated E-region plasma-density, hence, wavepackets steepen on their trailing edge, rapidly accessing small length-scales through wavebreaking. Inclusion of electron inertial effects in the magnetosphere introduces dispersion to IM-waves. In the strongly inertial limit (wavelength λ << λ_{e} , where λ_{e} is the electron inertial length at the base of the magnetosphere), the group velocity of linear waves goes to zero, and the waves oscillate at ω_{IM} which is an upper limit on the angular frequency of IM-waves for any wavelength. Estimates of v_{IM} show that this speed can be a significant fraction (perhaps half) of the E_{⊥} × B_{0} drift in the E-region, producing speeds of up to several hundred metres per second. The upper limit on angular frequency, ωIM , is estimated to give periods from a few hundredths of a second to several minutes. IM-waves are damped by recombination and background ionisation, giving an e-folding decay time that can vary from tens of seconds to tens of minutes. We have also investigated the dynamics and steady-states that occur when the magnetosphere-ionosphere system is driven by large-scale Alfvénic field-aligned currents. Steady-states are dominated by two approximate solutions: an ‘upper’ solution that is valid in places where the E-region is a near perfect conductor, and a ‘lower’ solution that is valid where E-region depletion makes recombination negligible. These analytic solutions are extremely useful tools and the global steady-state can be constructed by matching these solutions across suitable boundary-layers. Furthermore, the upper solution reveals that E-region density cavities form and widen (with associated broadening of the magnetospheric downward current channel) if the downward current density exceeds the maximum current density that can be supplied by background E-region ionisation. We also supply expressions for the minimum E-region plasma-density and shortest length-scale in the steady-state. IM-waves and steady-states are extremely powerful tools for interpreting MI-dynamics. When an E-region density cavity widens through coupling to an ideal, single-fluid MHD magnetosphere, it does so by forming a discontinuity that steps between the upper and lower steady-states. This discontinuity acts as part of an ideal IM-wave and moves in the direction of the electric field at a speed U = \sqrt{v_{IM} {+} v_{IM} {-}}, which is the geometric mean of v_{IM} evaluated immediately to the left and right of the discontinuity. This widening speed is typically several hundreds of metres per second. If electron inertial effects are included in the magnetosphere, then the discontinuity is smoothed, and a series of undershoots and overshoots develops behind it. These undershoots and overshoots evolve as inertial IM-waves. Initially they are weakly inertial, with a wavelength of about λ_{e}, however, strong gradients of ω_{IM} cause IM-waves to phase-mix, making their wavelength inversely proportional to time. Therefore, the waves rapidly become strongly inertial and oscillate at ω_{IM}. The inertial IM-waves drive upgoing Alfvén waves in the magnetosphere, which populate a region over the downward current channel, close to its edge. In this manner, the E-region depletion mechanism, that we have detailed, creates small-scale Alfvén waves in large-scale current systems, with properties determined by MI-coupling.

Page generated in 0.0628 seconds