• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Properties of traveling ionospheric disturbances (TIDs) over the Western Cape, South Africa

Tyalimpi, Vumile Mike January 2015 (has links)
Travelling Ionospheric Disturbances (TIDs) are said to be produced by atmospheric gravitational waves propagating through the neutral ionosphere. These are smaller in amplitude and period when compared to most ionospheric disturbances and hence more difficult to measure. Very little is known about the properties of the travelling ionospheric disturbances (TIDs) over the Southern Hemisphere regions since studies have been conducted mostly over the Northern Hemisphere regions. This study presents a framework, using a High Frequency (HF) Doppler radar to investigate the physical properties and the possible driving mechanisms of TIDs. This research focuses on studying the characteristics of the TIDs, such as period, velocity and temporal variations, using HF Doppler measurements taken in South Africa. By making use of a Wavelet Analysis technique, the TIDs’ characteristics were determined. A statistical summary on speed and direction of propagation of the observed TIDs was performed. The winter medium scale travelling ionospheric disturbances (MSTIDs) observed are generally faster than the summer MSTIDs. For all seasons, the MSTIDs had a preferred south-southwest direction of propagation. Most of the large scale travelling ionospheric disturbances (LSTIDs) were observed during the night and of these, the spring LSTIDs were fastest when compared to autumn and summer LSTIDs. The general direction of travel of the observed LSTIDs is south-southeast. Total Electron Content (TEC), derived from Global Positioning System (GPS) measurements, were used to validate some of the TID results obtained from the HF Doppler data. The Horizontal Wind Model (HWM07), magnetic K index, and solar terminators were used to determine the possible sources of the observed TIDs. Only 41% of the observed TIDs were successfully linked to their possible sources of excitation. The information gathered from this study will be valuable in future radio communications and will serve as means to improve the existing ionospheric models over the South African region.

Page generated in 0.0731 seconds