• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The reduction of iron content in ferrochromium via the nitriding/leaching route

Kirby, A. W. January 1986 (has links)
No description available.
2

Leaching from High Capacity Arsenic-Bearing Solid Residuals under Landfill Conditions

Keshta, Mohammed A. January 2009 (has links)
Arsenic is a naturally occurring contaminant in ground water. The link between human exposure to elevated levels of arsenic and the increase in cancerous and non-cancerous diseases is well documented. Consequently, arsenic removal from drinking water has been thoroughly investigated.Lowering the maximum contaminant limit of arsenic (from 50 to 10 ppb) will burden small water utilities, who either lack the financial or technical ability to comply. Adsorption onto solid media has been one of the most attractive options for small water utilities (EPA, 2001), but this process generates huge amounts of arsenic bearing solid residuals (ABSRs) complicating further this matter.Numerous studies have suggested that the Toxicity Characteristics Leaching Procedure (TCLP) does not properly reflect the actual leaching behavior of ASBRs under landfills (Ghosh et al., 2004). This work focuses on testing different arsenic iron- oxide and non- iron- based sorbents, likely to be used for arsenic removal, and assessing the long term behavior of these sorbents under landfill conditions. Our results indicate that microbial processes play a major role in the mobilization of As from granular ferric hydroxide (GFH). Long term operation of GFH sorbent showed that Fe (III) was reduced to Fe(II) and As(V) was reduced to As(III) under anaerobic/reducing conditions. Under semi batch landfill simulation experiments, our results show that non iron based media leached arsenic above the Toxicity Characteristics limit (TC) and it was observed that sorbate (As) might leach at a faster rate than the sorbent itself. It is thought that arsenic mobilization from iron-based sorbent occurs mostly due to iron reduction and its subsequent dissolution. However, measured arsenic leaching rates from the sorbents used in this study are comparable with that of the ferric hydroxide media, which indicates that the mechanism of arsenic mobilization might be independent of the possible dissolution of the sorbent. Despite the fact that non- iron based media may have a higher arsenic adsorption capacity, they leach arsenic at a higher rate than iron based media under our simulated landfill conditions.
3

The biogeochemistry of radioactively contaminated land

Thorpe, Clare January 2012 (has links)
A global legacy of radioactively contaminated land exists as a result of nuclear fuel cycle operations. Demonstration of the safe management of the UK nuclear legacy, including contaminated land, is important whilst the long term fate of legacy waste remains uncertain and the UK is moves towards new nuclear power. One aspect of nuclear contaminated land research focuses on the immobilisation of intermediate and long lived radionuclides that are mobile in groundwater and are migrating in the environment. At Sellafield nuclear facility, UK, strontium-90 and technetium-99 are found as co-contaminants in groundwater alongside the most abundant non radioactive contaminant, nitrate. Their differing radiochemical behaviour and the presence of nitrate presents a challenge for remediation strategies. Bioremediation has the potential for in-situ immobilization of 99Tc via reduction from mobile Tc(VII) to less mobile Tc(IV) concurrent with Fe(III) reduction. In this project bioreduction processes were investigated in sediment microcosms and model systems under variable pH and nitrate conditions and using microorganisms representative of the Sellafield site. Sediment bioreduction occurred via stimulation of the natural microbial community. Denitrification resulted a delay in the onset of metal reduction followed by a raised pH. At the mildly acidic pH of the natural sediments, a nitrate concentration of 100 mM caused bioreduction to stall. However, at pH 7, reduction of 100 mM nitrate resulted in a final pH > 9 and alkaline Fe(III) reduction. In bioreduced sediments, the microbial ecology was dominated by nitrate reducing microorganisms and Fe(III) reducing enrichment cultures were necessary to identify relevant alkaline Fe(III) reducing bacteria. Enrichment cultures isolated a novel alkali tolerant Fe(III) reducing Serratia sp. with a growth range of pH 4 to 9. Increased pH resulting from denitrification decreased the mobility of Sr2+ via increased sorption to mineral surfaces. X-ray absorption spectroscopy confirmed Sr2+ incorporation into carbonate mineral phases above pH 8.5. Model systems showed reductive removal of 99Tc from solution by an Fe(II) bearing mineral assemblage at both pH 7 and 9. In contrast Sr2+ remained in solution at pH 7 and precipitated as SrCO3 at pH > 8.5. This study for the first time demonstrates the effects of high nitrate on pH in Sellafield type sediments, alkaline Fe(III) reduction by a Serratia sp, the incorporation behaviour of Sr2+ during sediment bioreduction and the behaviour of Sr2+ and 99Tc in novel Fe(II) mineral bearing model systems. These findings improve the understanding of radionuclide migration at contaminated sites and inform possible engineered bioremediation scenarios.
4

Development of the Urban Wetland Filter for Managing Phosphorus in Stormwater

Rosenquist, Shawn E. 08 April 2010 (has links)
Degradation of surface water quality by excess nutrients in stormwater is a substantial environmental and economic problem in the U.S. Phosphorus (P) is often the limiting nutrient for harmful algal blooms and the best target to prevent degradation. Natural treatment strategies such as constructed wetlands (CW) demonstrate effective and economical P management but obstacles exist to implementation. Biological P removal has large land requirements that limit the use of best management practices (BMP) in high land-value areas. Various BMP also utilize sorption processes (SP) for P removal but variations in performance and finite sorption capacity limit SP as a viable long-term removal strategy. However, by understanding variability and making sorption capacity renewable, SP could provide, with shorter retention times, a space-efficient, long-term removal strategy. This multi-study research program developed the urban wetland filter (UWF), a concept intended to overcome the unique limitations of high land-value areas to natural treatment strategies and provide a low-cost, easily implemented BMP to meet P management goals while harvesting sequestered P for use as a fertilizer. Experimental factors included substrate and influent properties pertinent to understanding performance variation and optimizing microbial iron (Fe) reduction for rejuvenation of sorption capacity. Regarding performance, modeling identified major sources of variability including, by order of importance, magnitude of a solution/substrate concentration gradient, length of the "antecedent dry period" between loadings, and pH. Field-scale results confirmed this multifactor dependence of P-removal while also supporting the inclusion of cast-iron filings in substrate to improve P removal. Regarding rejuvenation, results indicated that microbial Fe reduction is capable of releasing previously sequestered P from substrates. A sufficient carbon source was necessary, but microbial inoculation was not necessary to facilitate Fe reduction, which released most of the previously sequestered P, albeit more slowly than P sequestration. Field-scale results indicated that Fe reduction might occur faster under field conditions, possibly due to humic acids, and that inclusion of cast-iron filings enabled additional P removal after rejuvenation by providing a conservative source of Fe for the creation of new sorption sites; however, cast-iron filings may also limit the release of P during rejuvenation. / Ph. D.
5

Microbial iron reduction on Earth and Mars

Nixon, Sophie Louise January 2014 (has links)
The search for life beyond Earth is the driving force behind several future missions to Mars. An essential task in the lead-up to these missions is a critical assessment of the habitability for, and feasibility of, life. However, little research has been conducted on this issue, and our understanding of the plausibility for life on Mars remains unconstrained. Owing to the anoxic and iron-rich nature of Mars, microbial iron reduction (MIR) represents a compelling candidate metabolism to operate in the Martian subsurface, past and present. The objectives of this thesis are to address the feasibility of MIR on Mars by i) better defining the habitability of MIR on Earth, and ii) assessing the range and availability of organic electron donors in the subsurface of Earth and Mars. Samples collected from Mars-relevant environments on Earth were used to initiate MIR enrichment cultures at 4°C, 15°C and 30°C. Results indicate MIR is widespread in riverbed and subglacial sediments but not sediments from desert or recent volcanic plains. The iron-reducing microorganisms in subglacial enrichments are at least psychrotolerant and in some cases psychrophilc. Culture-independent methods highlighted the changes in diversity between temperature conditions for subglacial sediments, and indicated that members of the prolific MIR Geobacteraceae family are common. The genera Geobacter and Desulfosporosinus are responsible for MIR in the majority of enrichments. Long-term anoxia and the availability of redox constituents are the major factors controlling MIR in these environments. A MIR enrichment culture was unable to use shales and kerogens as the sole source of electron donors for MIR, despite the presence of known electron donors. Furthermore, MIR was inhibited by the presence of certain kerogens. The causes of inhibition are unknown, and are likely to be a combination of chemical and physical factors. Experiments were conducted to assess the ability of three pure strains and a MIR enrichment to use non-proteinogenic amino acids common to carbonaceous meteorites as electron donors for MIR. Results demonstrate that γ-aminobutyric acid served as an electron donor for the enrichment culture, but no other amino acids supported MIR by this or other iron-reducing cultures. The D-form of chiral amino acids was found to exert a strong inhibitory effect, which decreased in line with concentration. Theoretical calculations using published meteoritic accretion rates onto the surface of Mars indicate that the build up inhibitory amino acids may place important constrains on habitability over geologic time scales. Contamination of a pure strain of Geobacter metallireducens with a strain of Clostridium revealed a syntrophic relationship between these microorganisms. Anaerobic heterotrophs are likely to play an important role in maintaining an available supply of electron donors for MIR and similar chemoorganic metabolisms operating in the subsurface. This research indicates that MIR remains a feasible metabolism to operate on Mars providing a readily available redox couple is present. However, given the observed inhibition in the presence of bulk carbonaceous material and certain amino acids found in meteorites, the use of extraterrestrial carbonaceous material in the Martian subsurface for microbial iron reduction is questionable, and should be the focus of future research.
6

Cleanup TCE and PCE-contaminated Site Using Bioremediation Technology

Lei, Shih-En 11 July 2000 (has links)
Abstract The industrial solvents tetrachloroethylene (PCE) and trichloroethylene (TCE) are among the most ubiquitous chlorinated compounds found in groundwater contamination. One potential method for managing PCE/TCE contaminated sites is the intrinsic bioremediation. Recent regulations adopted by U.S. Environmental Protection Agency allow intrinsic bioremediation to be considered as an alternative during development of corrective action plans. In some remediation cases, enhanced bioremediation are performed to accelerate the contaminant biodegradation rate. The main objective of this study was to evaluate the potential of using intrinsic and enhanced bioremediation technologies to clean up PCE/TCE contaminated aquifers. PCE/TCE bioavailability was evaluated by laboratory microcosms under four reduction/oxidation (redox) conditions including aerobic cometabolism, methanogenesis, iron reduction, and reductive dechlorination. Acclimated bacteria, activated sludge, and aquifer sediments from a pentachlorophenol contaminated site were used as the inocula in this study. Methane, toluene, phenol, sludge cake, and cane molasses were used as the primary substrates (carbon sources) in the cometabolism and reductive dechlorination microcosms. Results from this study show that PCE and TCE can be significantly biodegraded under reductive dechlorination and aerobic cometabolism conditions, respectively. All five carbon sources evaluated in this study can be applied as the primary substrates by microbial consortia to enhance the aerobic cometabolism of TCE. The highest TCE degradation rate [Up to 100% of TCE removal (with an initial concentration of 3.6µM)] was observed in the microcosms with toluene enrichment bacteria as the microbial inocula and toluene as the primary substrate. Under reductive dechlorination conditions, both sludge cake and cane molasses could be used as the primary substrates by microbial consortia (from activated sludge and aquifer sediments) and enhanced the biodegradation of PCE. The highest PCE degradation rate [Up to 100% of PCE removal (with an initial concentration of 17µM)] was observed in the microcosms with anaerobic activated sludge as the microbial inocula and sludge cake as the primary substrate. Except for reductive dechlorination microcosms, no significant PCE removal was observed in the microcosms prepared under iron reduction conditions. Results from this feasibility study would be useful in designing a scale-up in situ (e.g., in situ biobarrier system) or on-site bioremediation system (e.g., bioslurry reactor) for field application. Moreover, the application of non-toxic organic waste to enhance PCE/TCE biodegradation has the potential to become an environmentally and economically acceptable technology for the bioremediation of chlorinated-solvent contaminated groundwater.
7

Kinetics, Thermodynamics, and Habitability of Microbial Iron Redox Cycling

January 2017 (has links)
abstract: Many acidic hot springs in Yellowstone National Park support microbial iron oxidation, reduction, or microbial iron redox cycling (MIRC), as determined by microcosm rate experiments. Microbial dissimilatory iron reduction (DIR) was detected in numerous systems with a pH < 4. Rates of DIR are influenced by the availability of ferric minerals and organic carbon. Microbial iron oxidation (MIO) was detected from pH 2 – 5.5. In systems with abundant Fe (II), dissolved oxygen controls the presence of MIO. Rates generally increase with increased Fe(II) concentrations, but rate constants are not significantly altered by additions of Fe(II). MIRC was detected in systems with abundant ferric mineral deposition. The rates of microbial and abiological iron oxidation were determined in a variety of cold (T= 9-12°C), circumneutral (pH = 5.5-9) environments in the Swiss Alps. Rates of MIO were measured in systems up to a pH of 7.4; only abiotic processes were detected at higher pH values. Iron oxidizing bacteria (FeOB) were responsible for 39-89% of the net oxidation rate at locations where biological iron oxidation was detected. Members of putative iron oxidizing genera, especially Gallionella, are abundant in systems where MIO was measured. Speciation calculations reveal that ferrous iron typically exists as FeCO30, FeHCO3+, FeSO40 or Fe2+ in these systems. The presence of ferrous (bi)carbonate species appear to increase abiotic iron oxidation rates relative to locations without significant concentrations. This approach, integrating geochemistry, rates, and community composition, reveals biogeochemical conditions that permit MIO, and locations where the abiotic rate is too fast for the biotic process to compete. For a reaction to provide habitability for microbes in a given environment, it must energy yield and this energy must dissipate slowly enough to remain bioavailable. Thermodynamic boundaries exist at conditions where reactions do not yield energy, and can be quantified by calculations of chemical energy. Likewise, kinetic boundaries exist at conditions where the abiotic reaction rate is so fast that reactants are not bioavailable; this boundary can be quantified by measurements biological and abiological rates. The first habitability maps were drawn, using iron oxidation as an example, by quantifying these boundaries in geochemical space. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2017
8

Growth Kinetics and Constraints Related to Metabolic Diversity and Abundances of Hyperthermophiles in Deep-Sea Hydrothermal Vents

Ver Eecke, Helene Chavanne 01 February 2011 (has links)
This dissertation research aims to show that there are deterministic microbial distribution patterns based on quantifiable environmental thresholds by determining and rationalizing the relative abundances of hyperthermophilic methanogens, autotrophic iron(III) oxide reducers, and heterotrophic sulfur reducers within deep-sea hydrothermal vents. Organisms of these metabolisms are predicted to be relatively more abundant in different regions depending on environmental conditions such as reduction potential, organic carbon, and hydrogen availability. The relative abundances of these metabolic groups within samples from the Endeavour Segment and Axial Volcano in the northeastern Pacific Ocean were determined. Iron(III) oxide reducers were detected in nearly all samples while methanogens were generally not present or present in concentrations lower than those of the iron(III) reducers. To determine growth constraints and the effect of hydrogen concentration on hyperthermophilic methanogen growth kinetics, Methanocaldococcus jannaschii and two new Methanocaldococcus field isolates were grown at varying hydrogen concentrations. The hydrogen-dependent growth kinetics for all three strains were statistically indistinguishable, exhibiting longer doubling times and lower maximum cell concentrations with decreasing hydrogen concentrations until growth ceased below 17-23 μM. This minimum hydrogen concentration for hyperthermophilic methanogenesis was correlated with field microbiology and fluid geochemistry data from the Endeavour Segment and Axial Volcano. Anomalously high methane concentrations and thermophilic methanogens were only observed in fluid samples where hydrogen concentrations were above this predicted threshold. Aside from anomalous sites, methanogens are predicted to be hydrogen limited, and may rely on hydrogen produced by heterotrophs as suggested by in situ sampling and co-culture experiments. Models and kinetic experiments suggest that iron(III) oxide reducers are not hydrogen limited under the same conditions. A Methanocaldococcus strain that we isolated from Axial Volcano and used in our hydrogen threshold experiments was bioenergetically modeled over its range of growth temperatures, pH, NaCl concentrations, and NH4Cl concentrations. Its methane production rates and growth energies were largely constant but increased at superoptimal temperatures and when nitrogen was limiting. The results of this research demonstrate that the rates of and constraints on metabolic processes can be used to predict the distribution and biogeochemical impact of hyperthermophiles in deep-sea hydrothermal vent systems.
9

Cleanup 2,4-Dichlorophenol-contaminated Groundwater Useing Bioremediation Technology

Chen, Ku-Fan 29 August 2001 (has links)
none
10

Dissimilatory iron reduction: insights from the interaction between Shewanella oneidensis MR-1 and ferric iron (oxy)(hydr)oxide mineral surfaces

Zhang, Mengni 17 November 2010 (has links)
Dissimilatory iron reduction (DIR) is significant to the biogeochemical cycling of iron, carbon and other elements, and may be applied to bioremediation of organic pollutants, toxic metals, and radionuclides; however, the mechanism(s) of DIR and factors controlling its kinetics are still unclear. To provide insights into these questions, the interaction between a common dissimilatory iron reducing bacterium (DIRB)was studied, Shewanella oneidensis MR-1, and ferric iron (Fe(III)) (oxy)(hydr)oxide mineral surfaces. Firstly, atomic force microscopy was used to study how S. oneidensis MR-1 dissolved Fe(III) (oxy)(hydr)oxides and compared it to two other cases where Fe(III) (oxy)(hydr)oxides were either dissolved by a chemical reductant or by a mutant with an electron shuttling compound. Without the electron shuttling compound, the mutant is unable to respire on Fe(III) (oxy)(hydr)oxides, but with the electron shuttling compound, it can. It was found that the cells of S. oneidensis MR-1 formed microcolonies on mineral surfaces and dissolved the minerals in a non-uniform way which was consistent with the shape of microcolonies, whereas Fe(III) (oxy)(hydr)oxides were uniformly dissolved in both of the other cases. Secondly, confocal microscopy was used to study the adhesion behavior of S. oneidensis MR-1 cells on Fe(III) (oxy)(hydr)oxide surfaces across a broad range of bulk cell densities. While the cells were evenly distributed under low bulk cell densities, microcolonies were observed at high bulk cell densities. This adhesion behavior was modeled by a new, two-step adhesion isotherm which fit better than a simple Langmuir or Freundlich isotherm. The results of these studies suggest that DIR is in-part transport limited and the surface cell density may control DIR.

Page generated in 0.0797 seconds