• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Decomposition of ammonium perchlorate encapsulated nanoscale and micron-scale catalyst particles

Spencer A Fehlberg (8774588) 29 April 2020 (has links)
<p>Iron oxide is the most common catalyst in solid rocket propellant. We have previously demonstrated increased performance of propellant by encapsulating iron oxide particles within ammonium perchlorate (AP), but only nanoscale particles were used, and encapsulation was only accomplished in fine AP (~20 microns in diameter). In this study, we extended the size of particle inclusions to micron-scale within the AP particles as well the particle sizes of the AP-encapsulated catalyst particles (100s of microns) using fractional crystallization techniques with the AP-encapsulated particles as nucleation sites for precipitation. Here we report catalyst particle inclusions of micron-scale, as well as nanoscale, within AP and present characterization of this encapsulation. Encapsulating micron-sized particles and growing these composite particles could pave the way for numerous possible applications. A study of the thermal degradation of these AP-encapsulated particles compared against a standard mixture of iron oxide and AP showed that AP-encapsulated micron-scale catalyst particles exhibited similar behavior to AP-encapsulated nanoscale particles. Using computed tomography, we found that catalyst particles were dispersed throughout the interior of coarse AP-encapsulated micron-scale catalyst particles and decomposition was induced within these particles around catalyst-rich regions.</p>
2

Iron oxide catalyst for conversion of pyrolysis oil from biomass – water-gas shift properties / Järnoxidkatalysator för omvandling av pyrolysolja från biomassa – vattengasskiftsegenskaper

Butler, Lochlan January 2024 (has links)
Iron oxide catalyst have been used to perform high temperature water-gas shift reactions (HTWGSR). They have shown to be affective for application in a pyrolysis gas pre-conditioning step to create a hydrogen enriched gas and possibly removing the need for bio-crude condensation before further treatment or use. A small-scale experimental study of an iron oxide catalyst with additives provided by Topsoe, exposed to different H2O:CO ratios temperatures was conducted. The catalyst was first activated following steps given by the supplier. The different H2O:CO ratios tested on the catalyst were 2:1, 4:1 and 6:1 at 350 °C and 2:1, 4:1 and 6:1 at 450 °C. The space velocity was kept constant at 52500 L/(kgcat·h) for all the experiments. No significant deactivation was observed through the 18-hour experiment, based on Brunauer-Emmett-Teller (BET) results. The results show that the highest conversion of CO was achieved at 4:1 H2O:CO ratio at 450 °C, the best H2 selectivity was at 2:1 H2O:CO ratio at 350 °C, and the highest yield was obtained at 6:1 ratio at 450 °C. The initial condition (4:1 H2O:CO ratio at 350 °C) showed anomalous activity as it had a surprisingly low H2 selectivity (25%) and a comparatively high conversion of CO (20.8%). This could have been due to systematic error or possibly due to other side reactions (production of methane) happening. Literature on similar behaviour was not found. A two-way Analysis of Variance (ANOVA) test was conducted and concluded that all 3 noll hypotheses could be rejected, furthermore, have 3 separate 2x2 factorial design tests been done using MATLAB where the results show that all effects including interaction effects were active with the most significant effect being the change in temperature and the least significant being the change in H2O:CO ratio above 4:1. The results show that this particular iron oxide catalyst with additives provided by Topsoe operates best at temperatures around 450 °C at a H2O:CO ratio of 4:1 or above. It shows no signs of deactivation and may be able to perform WGSR for extended periods of time. / Järnoxidkatalysatorer har använts för att utföra reaktioner för vatten-gasskift vid höga temperaturer (HTWGSR). De har visat sig vara effektiva för tillämpning i ett pyrolysgasförberedningssteg för att skapa en väteberikad gas och eventuellt eliminera behovet av kondensering av biologisk råolja innan ytterligare behandling eller användning. En småskalig experimentell studie av en järnoxidkatalysator med tillsatser från leverantören Topsoe, utsatt för olika H2O:CO-förhållanden vid olika temperaturer, genomfördes. Katalysatorn aktiverades först enligt de anvisningar som lämnats av leverantören. De olika förhållandena som testades på katalysatorn var 2:1, 4:1 och 6:1 vid 350 °C samt 2:1, 4:1 och 6:1 vid 450 °C. Utrymmeshastigheten (space velocity) hölls konstant på 52500 L/(kgcat·h) för alla experiment. Ingen signifikant inaktivering observerades under det 18 timmar långa experimentet, baserat på Brunauer-Emmett-Teller (BET) resultat. Resultaten visar att den högsta konverteringen av CO uppnåddes vid 4:1 H2O:CO-förhållande vid 450 °C. Bästa H2-selektiviteten observerades vid 2:1 H2O:CO-förhållande vid 350 °C, medan högsta utbytet erhölls vid 6:1-förhållande vid 450 °C. Det initiala förhållandet (4:1 H2O:CO vid 350 °C) visade anomalt beteende med en låg H2-selektivitet (25%) och en jämförelsevis hög konvertering av CO (20,8%). Detta kan ha berott på systematiskt fel eller möjligen på andra sidoreaktioner (produktion av metan). Litteratur om liknande beteende hittades inte. En tvåvägs Analysis of Variance (ANOVA) test genomfördes och slutsatsen var att alla tre nollhypoteser kunde förkastas. Dessutom har tre separata 2x2-faktoriella designtester utförts med hjälp av MATLAB, där resultaten visar att alla effekter, inklusive interaktionseffekter, var aktiva. Den mest signifikanta effekten var förändringen i temperatur, medan den minst signifikanta var förändringen i H2O:CO-förhållandet över 4:1. Resultaten visar att den specifika järnoxidkatalysatorn med tillsatser från Topsoe fungerar bäst vid temperaturer runt 450 °C och vid ett H2O:CO-förhållande på 4:1 eller högre. Den visar inga tecken på inaktivering och kan möjligen utföra WGSR under förlängda tidsperioder.
3

The use of bimetallic heterogeneous oxide catalysts for the Fenton reaction

Mgedle, Nande January 2019 (has links)
M.Tech. (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology / Water contaminated with non-biodegradable organics is becoming increasing problematic as it has a hazardous effect on human health and the aquatic environment. Therefore, the removal of organic contaminants is of importance and an active heterogeneous Fenton catalyst is thus required. The literature indicates that a bimetallic oxide Fenton catalyst is more active than an iron oxide catalyst. This study focused on increasing the activity of iron-based Fenton catalysts with the addition of transition metals such as manganese, cobalt and copper and optimizing the preparation method. In this study, bimetallic oxide (Fe-Cu, Fe-Mn, Fe-Co) and monometallic oxide (Fe, Cu, Mn,Co) catalysts supported on silica SiO2 where prepared by incipient wetness impregnation. The total metal oxide contents were kept constant. The catalysts where calcined in two different ways, in a conventional oven and in a microwave. These catalysts were characterized with XRD, XPS and CV and were tested for the degradation of methylene blue dye at 27°C. The catalysts calcined in a microwave oven had a higher catalytic activity than those prepared in a conventional oven. The bimetallic oxide catalysts outperformed the mono- metallic oxide catalysts in the degradation of methylene blue. The Fe2MnOx prepared by microwave energy were the most active catalyst yielding the highest percentage of degradation of methylene blue dye (89.6%) after 60 minutes. The relative amounts of manganese and iron oxide were varied while keeping the total metal content in the catalyst the same. The optimum ratio of Fe to Mn was 1:7.5 since it yielded the most active catalyst. A 96.6 % removal of methylene blue was achieved after 1 hour of degradation. Lastly this ratio 1Fe:7.5Mn was prepared by varying different microwave power (600, 700 and 800 W) and irradiation time (10, 20 and 30 min). The optimum microwave power and irradiation time was 800W and 10 min with the methylene blue percentage removal of 96.6 % after 1 hour of degradation.

Page generated in 0.0562 seconds