• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering behavior and characterization of physical-chemical particulate mixtures using geophysical measurement techniques

Choo, Hyunwook 27 August 2014 (has links)
Natural geomaterials exhibit a wide range in size, physical properties, chemical properties, and mechanical behaviors. Soils that are composed of mixtures of particles with different physical and chemical properties pose a challenge to characterization and quantification of the engineering properties. This study examined the behavior of particulate mixtures composed of differently sized silica particles, mixtures composed of aluminosilicate and organic carbon particles, and mixtures composed of particles with approximately three orders of magnitude difference in particle size. This experimental investigation used elastic, electromagnetic, and thermal waves to characterize and to quantify the small to intermediate strain behavior of the mixtures. The mechanical property of stiffness of mixed materials (e.g. binary mixtures of silica particles and fly ashes with various carbon and biomass contents) was evaluated through the stiffness of active grain contacts, and the stiffness of particles which carry applied load, using the physical concepts of intergranular void ratio and interfine void ratio. Additionally, the change in both contact mode/stiffness and electrical property due to the presence of nano-sized particles (i.e., iron oxides) on the surface of soil grains was evaluated according to applied stress, packing density, iron coating density, and substrate sand particle size. Finally, the biomass fraction and total organic carbon content of mixtures was used to quantify the electrical and thermal conductivities when particulate organic was mixed with aluminosilicate particles.

Page generated in 0.0689 seconds