Spelling suggestions: "subject:"iron platinum nanocrystals"" "subject:"ron platinum nanocrystals""
1 |
Synthesis and characterization of silicon nanowires, silicon nanorods, and magnetic nanocrystalsHeitsch, Andrew Theron 05 October 2010 (has links)
Silicon nanowires, silicon nanorods, and magnetic nanocrystals have shown interesting size, shape, mechanical, electronic, and/or magnetic properties and many have proposed their use in exciting applications. However, before these materials can be applied, it is critical to fully understand their properties and how to synthesize them economically and reproducibly. Silicon nanowires were synthesized in high boiling point ambient pressure solvents using gold and bismuth nanocrystals seeds and trisilane as the silicon precursor. Reactions temperatures as low as 410°C were used to promote the solution-liquid-solid (SLS) growth of silicon nanowires. The silicon nanowires synthesis was optimized to produce 5 mg of silicon nanowires with average diameters of 30 nm and lengths exceeding 2 [mu]m by adjusting the silicon to gold ratio in the injection mixture and reaction temperature. Silicon nanorods were synthesized using a solution-based arrested-SLS growth approach where gold seeds, trisilane, and a dodecylamine were vital to the success. Dodecylamine was found to prevent gold seed coalescence at high temperatures -- creating small diameter rods -- and bond to the crystalline silicon surface -- preventing silicon nanorod aggregation. Furthermore, an etching strategy was developed using an emulsion of aqua regia and chloroform to remove the gold seeds from the silicon nanorods tip. A thin silicon shell surrounding the gold seed of the silicon nanorod was subsequently observed. Multifunctional colloidal core-shell nanoparticles of iron platinum or iron oxide encapsulated in fluorescent dye doped silica shells were also synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with a uniform silica shell using a microemulsion approach. These colloidal heterostructures have the potential to be used as dual-purpose tags, exhibiting a fluorescent signal that could be combined with enhanced magnetic resonance imaging contrast. Compositionally-ordered, single domain, antiferromagnetic L1₂ FePt₃ and ferromagnetic L1₀ FePt nanocrystals were synthesized by coating colloidally-grown Pt-rich or stoichiometricly equal Fe-Pt nanocrystals with thermally-stable SiO₂ and annealing at high temperature. Without the silica coating, the nanocrystals transform predominately into the L1₀ FePt phase due to interparticle diffusion of Fe and Pt atoms. Magnetization measurements of the L1₂ FePt₃ nanocrystals revealed two antiferromagnetic transitions near the bulk Neél temperatures of 100K and 160K. Combining L1₂ FePt₃ nanocrystals with L1₀ FePt nanocrystals was found to produce a constriction in field-dependent magnetization loops that has previously been observed near zero applied field in ensemble measurements of single domain silica-coated L1₀ FePt nanocrystals. Dipole interactions between FePt@SiO₂ nanoparticles with varying SiO₂ shell thickness was also explored. / text
|
Page generated in 0.1042 seconds