• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of nonequilibrium ecology to managed riparian ecosystems

Stringham, Tamzen K. 24 April 1996 (has links)
Seasonal trends in water table level and soil moisture for four plant community types within an irrigated eastern Oregon riparian zone were described. Aboveground biomass, species composition, litter, percent bareground and percent basal cover of key plant species and life forms were measured. The relationship between water table levels and soil moisture content were analyzed using simple linear regression. Transition zones between plant community types based on soil moisture and/or depth to water table during the growing season were determined. The soil moisture-water table relationship can be used to predict changes in plant community composition induced by a permanent depth to water table change. Irrigation impact on meadow water table levels and stream temperature were determined. Water table levels responded to irrigation manipulations within days. The permanent cessation of irrigation would shrink the riparian meadows contained within this study from widths in excess of 300 m to less than 60 m. Continuous stream temperature data were collected on a stream running through adjacent non-irrigated and irrigated meadows. Daily maximum stream temperatures in the segment contained within the irrigated meadow were 1.0�� to 3.0�� C cooler than the reach contained within the non-irrigated meadow. Management impact on plant community attributes, forage production and forage quality were assessed under three pasture management alternatives. Comparison of stubble height, litter, forage production, forage quality, species composition, percent bareground and percent basal cover of key plant species and life forms indicated all three management alternatives are sustainable from both a plant community and a livestock production perspective. / Graduation date: 1996
2

Effects of potato cropping practices on nitrate leaching in the Columbia basin

McMorran, Jeffrey P. 22 June 1994 (has links)
Graduation date: 1995
3

A laboratory and glasshouse evaluation of an anaerobic baffled reactor effluent as a nutrient and irrigation source for maize in soils of KwaZulu-Natal, South Africa.

Bame, Irene Bongsiysi. 06 November 2013 (has links)
Scarcity of water for irrigation is a serious hindrance for small-scale farmers in sub-Saharan Africa. The use of good quality water for irrigation has resulted in increasing pressure on such water which has prompted sourcing of wastewater as an alternative. One possibility, being investigated by eThekwini Water and Sanitation (Durban, South Africa), is to install anaerobic baffled reactors within local communities to treat wastewater to allow its use for agriculture. The success of wastewater irrigation depends on the ability of the soil to assimilate the water, nutrients and any other contaminants that are applied to it. The aim of this project was to investigate the potential of an anaerobic baffled reactor (ABR) effluent as both an irrigation and nutrient source for use in peri-urban agriculture. The effluent was slightly alkaline (pH 7.40–7.60) and in class C2S1 (medium-salinity/low sodicity water) according to the United States Soil Salinity Laboratory classification for irrigation waters. It was very low in heavy metals, values being below permissible levels according to the Food and Agricultural Organisation (FAO) of the United Nations and the South African Department of Water Affairs and Forestry (DWAF) guidelines for water use in agriculture. The total solids were low thus particulate matter was minimal with a greater concentration of the major elements found in solution. An investigation was carried out to ascertain the behaviour of the effluent when applied to soil and how the soil was able to adsorb plant nutrients from it. A soil column study was undertaken in the laboratory with three contrasting soil types namely a sandy soil (Longlands, E horizon), an organic soil (Inanda, A horizon) and a clayey soil (Sepane, A horizon). The effluent was leached through the soil while distilled water was concurrently used as a control. Results indicated that after application of 16 pore volumes, leachates from the columns contained concentrations of Na, equal to that in the incoming effluent for all soils. The concentrations of Ca and Mg were lower in the leachates than in the original effluent indicating adsorption in the soils. Phosphorus was the element that was most strongly adsorbed in all soils. While its adsorption in the Ia could be attributed to organic matter and the presence of iron oxides and oxyhydroxides, the clay type and amount in the Sepane was likely to have been responsible for P adsorption. The NO₃-N, which was initially low in the effluent, increased as leaching progressed, while the NH₄-N decreased. In the water-leached columns, elements were leached out of soil because none were added with the water. At the end of leaching, columns were allowed to drain and then sectioned into 2 cm segments. The 0-2 cm, 8-10 cm and 14-16 cm segments representing the top, middle and bottom parts of the column were analysed for inorganic-N, phosphorus and potassium. The elemental content of the 0-2 cm segment was significantly higher (p<0.05) than the lower segments in all columns for soluble P in all soils. This reflects the immobile nature of P in soils and confirmed the high amounts of P retained by the soils. There were significant differences between the effluent and the water-leached soils in terms of P retention. The amount of inorganic-N and K in the top layer was not significantly different from the other layers. In the Ia 0–2 cm segment, a pH increase of about 1.3 pH units was recorded in the effluent-leached columns when compared to the equivalent segment in the water-leached columns. A glasshouse study was undertaken to assess the availability to maize of nutrients from the effluent. Maize was grown for 6 weeks in pots filled with the same soil types used in the columns study except that a similar sandy soil, Cartref (Cf, E horizon), replaced the Lo due to inadequate availability of the latter. Fertilizer (N, P and K) was applied at the full recommended rate, half the recommended rate and zero fertilizer for each of the three soils used. This corresponded to 0, 100, 200 kg N ha⁻¹ for all soils; 0, 40, 80 kg P ha⁻¹ and 0, 50, 100 kg K ha⁻¹ for the Cf; 0, 10, 20 kg P ha⁻¹ and 0, 102.5, 205 kg K ha⁻¹ for Ia; and 0, 30, 60 kg P ha⁻¹ and 0, 5, 10 kg K ha⁻¹ for Se. Lime was applied to the Ia soil at the rate of 10 t ha⁻¹. Plants were watered with either effluent or tap water. Dry matter yield and nutrient concentrations for effluent-irrigated maize were significantly higher (p<0.05) than for all equivalent fertilizer applications in the water-irrigated plants. The unfertilized effluent-irrigated plants were not significantly different from the fertilized water-irrigated plants, but performed as well as the water-irrigated plants at half fertilization irrespective of soil type. Phosphorus deficiency was observed in the Ia and Se soils but not in the Cf soil, irrespective of fertilizer treatment. Plants grown on the Cf soil irrigated with effluent and fully fertilized had the highest above-ground dry matter yield (4.9 g pot⁻¹) and accumulated the most nutrients namely N, P, K, Ca and Mg than all other treatments. After harvest the most marked changes had occurred in the Cf soil for P as the effluent-irrigated soils were significantly higher (p<0.05) than the water-irrigated soils reflecting the P input from the effluent. The effect of effluent on soil and plants was further investigated by planting maize on the Ia soil without lime application. Plants that received effluent irrigation and no lime had significantly higher (p<0.05) dry matter yields and accumulated more N, P and K than the water-irrigated with no lime as well as the equivalent limed treatments. This suggests an interaction effect between the lime and the effluent with its effects obvious on above-ground dry matter yield and plant N, P and Mg. A soil column experiment using the Cf, Ia and Se soils and planted with maize was conducted to assess the ability of plants to take up nutrients with concurrent leaching. Plants from the Cf soil recorded the lowest above-ground dry matter yield which was observed from the less vigorous growth as compared to plants in the Ia and Se soils. This growth pattern could also be explained by the low N accumulation in the plants from the Cf soil. Unlike N, P in plants grown on the Cf soil was significantly higher (p<0.05) than in the plants on the Ia and Se soils, despite having the least P gain from the effluent. The readily available P triggered both more uptake and also greater losses through leaching. The rate at which P was being supplied from the effluent was greater than its uptake by the plants and with limited capacity to hold onto P in this sandy soil there was inevitably loss though leaching. A pot experiment was conducted to investigate the interaction effects between lime and effluent. Lime type (calcium hydroxide or dolomite) was applied to two acidic top soils namely Inanda and Avalon at 0%, 25%, 50%, 75% and 100% of the recommended rates for these soils. Maize was planted and after 6 weeks it was harvested and evaluated for above-ground dry matter yields and plant nutrient concentrations. Non-significant effects were recorded for above-ground dry matter, N, P and K as a result of altering the liming rate and type within each soil. The effects of lime application were apparent in the soils after harvest as increasing the lime rate caused an increase in pH and an inverse relationship with the exchangeable acidity and acid saturation in soils, as expected. Although the unlimed treatments did not impact on the acidity as much as the limed treatments, effluent irrigation was shown to reduce soil acidity after harvest when compared to the soils at the beginning of the experiment. Phosphorus accumulation in plants was also unaffected by either lime rate or type which showed that effluent irrigation could influence P availability and further liming would not accrue benefits to the soil so as to influence plant P uptake. Based on these data, ABR effluent could be perceived as a resource rather than a waste product. It could conveniently be used for irrigation provided there is soil and plant monitoring to assess build-up of elements especially in the long term. Further investigations have to be carried out on other crop types both in the field and glasshouse to ascertain nutrient uptake and effect on different soil types. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
4

Cyclic deposition of salt-laden dusts as an explanation of salinisation in a groundwater recharge zone Coleambally irrigation area Riverine plain NSW

Bell, Justin Robert William, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Salinisation of the shallow groundwater system has occurred coincident with the development of irrigation in the Coleambally Irrigation Area. Salinisation in irrigation areas has previously been attributed to the evaporative concentration of the water table; however, there are other sources of salt such as the accumulation of rainfall by vegetation and the dry deposition of salt-laden dusts. A significant store of crystalline gypsum, together with high concentrations of Na, Mg and Confidence limit, was found within the previously unsaturated zone of the Upper Shepparton Formation. The salt store was identified both within and outside of the groundwater mound; therefore evaporative concentration of the water table cannot be the source of salt. The transition from regional groundwater quality, as applied as irrigation to the ground surface, to shallow groundwater quality is simply explained by solubilisation of this salt store in the presence of soil CO2. Dating of basal palaeochannel sands indicates that the identified salt store, a profile of only 20 m, was accumulated during the last glacial cycle. Radiocarbon dating indicates that the peak in eluate salinity, at approximately 2 m below ground surface, is between 15,000 and 25,000 years old, coincident with the Last Glacial Maximum. The Last Glacial Maximum was a period of significantly enhanced aridity on the Australian continent. It was also found that the peak in eluate salinity coincided with a bi-modal particle size distribution. The bi-modal signature implies that these sediments were subject to the aeolian accession of dusts. It was found that the contribution of salt from dry deposition of dusts exceeded the contribution from rainfall by at least 1.9 to 11 times during the last glacial cycle. The results of this study imply that salt-laden dusts have, and continue to play an important role in the salinity and sodicity of soils in the Coleambally Irrigation Area and beyond.
5

Assessment of drainwater evaporation ponds as waterfowl habitat in the San Joaquin Valley, California

Euliss, Ned H. 11 October 1989 (has links)
Graduation date: 1990
6

Cyclic deposition of salt-laden dusts as an explanation of salinisation in a groundwater recharge zone Coleambally irrigation area Riverine plain NSW

Bell, Justin Robert William, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Salinisation of the shallow groundwater system has occurred coincident with the development of irrigation in the Coleambally Irrigation Area. Salinisation in irrigation areas has previously been attributed to the evaporative concentration of the water table; however, there are other sources of salt such as the accumulation of rainfall by vegetation and the dry deposition of salt-laden dusts. A significant store of crystalline gypsum, together with high concentrations of Na, Mg and Confidence limit, was found within the previously unsaturated zone of the Upper Shepparton Formation. The salt store was identified both within and outside of the groundwater mound; therefore evaporative concentration of the water table cannot be the source of salt. The transition from regional groundwater quality, as applied as irrigation to the ground surface, to shallow groundwater quality is simply explained by solubilisation of this salt store in the presence of soil CO2. Dating of basal palaeochannel sands indicates that the identified salt store, a profile of only 20 m, was accumulated during the last glacial cycle. Radiocarbon dating indicates that the peak in eluate salinity, at approximately 2 m below ground surface, is between 15,000 and 25,000 years old, coincident with the Last Glacial Maximum. The Last Glacial Maximum was a period of significantly enhanced aridity on the Australian continent. It was also found that the peak in eluate salinity coincided with a bi-modal particle size distribution. The bi-modal signature implies that these sediments were subject to the aeolian accession of dusts. It was found that the contribution of salt from dry deposition of dusts exceeded the contribution from rainfall by at least 1.9 to 11 times during the last glacial cycle. The results of this study imply that salt-laden dusts have, and continue to play an important role in the salinity and sodicity of soils in the Coleambally Irrigation Area and beyond.

Page generated in 0.1384 seconds