• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 37
  • 14
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 145
  • 145
  • 69
  • 50
  • 43
  • 40
  • 35
  • 34
  • 32
  • 26
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Receptor-operated signaling pathways in normal and diabetic pancreatic islet cell function /

Zhang, Fan, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 4 uppsatser.
32

Effects of Free Fatty Acids on Insulin and Glucagon Secretion : – with special emphasis on the role of Free fatty acid receptor 1

Kristinsson, Hjalti January 2017 (has links)
Prevalence of type 2 diabetes mellitus (T2DM) is still rising and even so in the juvenile population. Obesity is highly associated with increased risk for developing T2DM. The development has been related to elevated fasting concentrations of the pancreatic islet hormones insulin and glucagon as well as to an increase in plasma lipids that occurs during obesity. Specifically, research has indicated that chronic exposure to high levels of saturated free fatty acids cause dysfunction in islet alpha- and beta-cells. Fatty acids can affect islet cells by various mechanisms one of which is the G-protein coupled receptor FFAR1/GPR40. The role of the receptor in the effects of fatty acids on pancreatic islet-cell function is not clear. The aim of this thesis was to clarify the role of FFAR1 in how fatty acids, and more specifically the long-chain saturated fatty acid palmitate, affect insulin and glucagon secretion. In children and adolescents with obesity elevated fasting levels of insulin and glucagon were positively correlated with lipid parameters. Specifically, plasma triglycerides and free fatty acids were positively correlated with insulin and glucagon at fasting as well as with visceral adipose tissue volume. Elevated glucagon levels at fasting were associated with worsening of glucose tolerance in the same population. In in vitro studies of isolated human islets palmitate stimulated basal insulin and glucagon secretion as well as mitochondrial respiration at fasting glucose levels. The effect was mediated by FFAR1 and fatty acid beta-oxidation. At higher glucose concentrations the receptor was involved in the potentiation of insulin secretion from isolated human islets and insulin-secreting MIN6 cells. Furthermore, we found that the effects of palmitate on hormone secretion were associated with enhanced mitochondrial respiration mediated by FFAR1 Gαq signaling and PKC activity as well as increased intracellular metabolism induced by the fatty acid. When islets were exposed to palmitate for long time periods and in the presence of FFAR1 antagonist, normalized insulin and glucagon secretion during culture and insulin response to glucose after culture were observed. In MIN6 cells chronic palmitate treatment increased mitochondrial uncoupling irrespective of FFAR1 involvement. However, FFAR1 antagonism during palmitate exposure resulted in elevated respiration and reduced apoptosis. In conclusion, children and adolescents with obesity have elevated fasting concentrations of insulin and glucagon that correlate with free fatty acids and fatty acid sources. High glucagon levels are linked to worsening of glucose tolerance in these subjects. In vitro the combination or synergy of FFAR1 activation and intracellular metabolism caused by palmitate is decisive for both the short-term enhancement effects and the negative chronic effects on insulin and glucagon secretion.
33

Immunopathology of the Pancreas in Type 1 Diabetes

Wiberg, Anna January 2016 (has links)
Type 1 diabetes (T1D) results from a loss of functional insulin-producing pancreatic beta cells. The etiology of T1D is poorly understood, but the detection of infiltrating inflammatory cells in the pancreas and circulating autoantibodies has led to the common notion that an autoimmune process plays a central role in the pathogenesis of the disease. The aim of this doctoral thesis was to assess various aspects of the immunopathology of type 1 diabetes. To this purpose, studies have been conducted on pancreatic material from the Network for Pancreatic Organ Donors with Diabetes (nPOD) collection, the Nordic Network for Islet Transplantation, and the Diabetes Virus Detection (DiViD) study. Paper I is a study on pancreatic tissue from organ donors with varying duration of T1D as well as non-diabetic donors and subjects with other types of diabetes, in which persistent expression of glucose transporters was shown on the beta cell membrane despite several years of T1D. Glucose transporter 1 was also confirmed as the predominant glucose transporter on human pancreatic islets. In paper II, we report on signs of inflammation in the exocrine but not in the endocrine pancreas in non-diabetic organ donors with diabetes-related autoantibodies, suggesting that diabetes-associated autoantibodies can occur in response to unspecific pancreatic lesions. Paper III aimed to characterize the T cell-infiltration of pancreatic islets in material from recent-onset T1D patients. Insulitis was shown in all subjects, but with distinct differences in expression analysis of T- and B cell activation to cell-mediated allorejected kidney transplant. Also Paper IV was conducted on material from recent-onset cases and showed increased islet glucagon content, in combination with a reduced number of islets but sustained mean islet size. Together, these results provide expansion of our knowledge of the immunopathology in T1D, and will hopefully assist in bringing us towards a deeper understanding of T1D aetiology and eventually an effective cure.
34

Regulação do perfil transcricional pelas SMADs 1, 5 e 8 em células <font face=\"Symbol\">b da linhagem INS1E. / Regulation of the transcriptional profile by SMADs 1, 5 and 8 in INS1E <font face=\"Symbol\">b cells.

Anhê, Fernando Forato 14 June 2010 (has links)
BMPs ocupam papel central na diferenciação e crescimento celulares. A sinalização intracelular das BMPs depende de substratos conhecidos como BR-SMADs (SMAD1/5/8). Em ilhotas pancreáticas de ratas grávidas, onde ocorre aumento da massa endócrina e da síntese e secreção de insulina, houve aumento da expressão do receptor BMPR1A. Em camundongos knockout para BMPR1A houve diminuição da expressão de genes-chave na exocitose de grânulos de insulina. Tais eventos estão associados à redução da atividade das BR-SMADs. O objetivo deste trabalho foi avaliar, em células <font face=\"Symbol\">b INS1E, o perfil de expressão gênica em larga escala após silenciamento das BR-SMADs. As expressões relativas de Munc18a, Munc18b e Snap23 foram reduzidas quando do silenciamento das BR-SMADs (n=3, p<0,05 vs CTL). O silenciamento de SMAD1 (n=3, p<0,05 vs CTL) ou SMAD5 (n=3, p<0,05 vs CTL) acarretaram redução do mRNA de Sintaxina 4. Conclui-se que as BR-SMADs estão envolvidas na regulação da secreção de insulina modulando proteínas envolvidas na fusão de vesículas contendo grânulos de insulina à membrana plasmática de células INS1E. / BMPs play a determinant role in cell differentiation and growth. BMP intracellular signaling involves the substrates know as BR-SMADs (SMAD1/5/8). BMPR1A receptor expression was upregulated in pancreatic islets from pregnant rats, in wich endocrine mass and insulin secretion are increased. Mice with attenuated BMPR1A signaling in <font face=\"Symbol\">b cells showed decreased expression of key genes involved in insulin exocytosis. These events are associated with reduction of BR-SMADs activity. The aim of this work was to perform a screening to evaluate changes in expression profiles after knockdown of BR-SMADs in INS1E <font face=\"Symbol\">b cells. Relative expressions of Munc18a, Munc18b and Snap23 were diminished after knockdown of the BRSMADs (n=3, p<0,05 vs CTL). Only SMAD1 (n=3, p<0,05 vs CTL) and SMAD5 (n=3, p<0,05 vs CTL) silencing caused reduction of sintaxin 4 expression. These data point to the involvement of BR-SMADs in the regulation of insulin secretion by modulating the expression of proteins responsible by fusion of insulin-containing granules to the membrane of INS1E cells.
35

Characterisation of pathological changes in the pancreas and kidneys in type 2 diabetes mellitus. / CUHK electronic theses & dissertations collection / Digital dissertation consortium

January 2002 (has links)
Zhao Hailu. / "June 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 192-210). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
36

Isolation, characterization and differentiation of pancreatic progenitor cells from human fetal pancreas. / CUHK electronic theses & dissertations collection

January 2007 (has links)
Another growth factor candidate is a recently recognized bioactive peptide, islet-neogenesis associated protein (INGAP). A master pancreatic transcription factor, pancreatic duodenal homeobox-1 (Pdx-1), was overexpressed in PSCs by the adenovirus-mediated transfer method in the present study. With the infection of adenovirus expressing Pdx-1, several beta-cell developmental genes, including Isl-1, Beta2, Nkx2.2, Nkx6.1 and the endogenous Pdx-1 were found to be upregulated temporally in our PSCs-derived ICCs. Meanwhile, previous study has shown that Pdx-1/INGAP-positive cells represent a new stem cell subpopulation during early stage of pancreatic development. We thus explore whether any functional integration of Pdx-1 and INGAP in the growth and functional maturation of PSCs. In order to achieve this proposition, the effects of over-expressing PSCs with the Pdx-1 adenovirus in conjunction with the treatment of INGAP were then investigated. Interestingly, differentiation of the PSC-derived ICCs was not further enhanced by the synergistic treatment of Pdx-1 and INGAP when compared to those ICCs infected with adenovirus expressing Pdx-1 alone, as revealed by the endogenous Pdx-1 and insulin gene expression and their C-peptide content. These data might provide some clues to the intricate interaction between Pdx-1 and INGAP in regulating the ICC and/or the pancreatic endocrine differentiation. (Abstract shortened by UMI.) / Due to the scarcity of fetal pancreas for generating functional insulin-secreting cell clusters for sufficient islet transplantation, we targeted for searching pancreatic stem/progenitor cells. Putative PSCs can be aggregated and differentiated into islet-like cell clusters (ICCs) when exposed to serum-free medium containing various conventional growth factors, including HGF, GLP-1, betacellulin and nicotinamide. / Fetal pancreatic tissue consisting of immature progenitor cells serves as a potential source of stem cells as they possess a higher replicative capacity and longevity than their adult counterparts. / Two novel candidates and a key pancreatic transcription factor on the PSC/ICC proliferation and differentiation were investigated in the present study. One of them is a ubiquitously expressed multi-PDZ-domain protein, PDZ-domain-containing 2 (PDZD2), which was previously found to express in the mouse beta cells and exhibit mitogenic effects in beta cell line. Results showed that PDZD2 was detected in high levels in both human fetal pancreas and in PSCs. Results indicate the potential involvement of PDZD2 in regulating PSCs proliferation and differentiation and pancreatic development. / Suen Po Man, Ada. / "July 2007." / Adviser: P.S. Leung. / Source: Dissertation Abstracts International, Volume: 69-01, Section: B, page: 0051. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 194-214). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
37

Studies on some immune properties of the pancreatic progenitor cells derived from human fetal pancreas.

January 2010 (has links)
Ma, Man Ting. / "July 2010." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 186-207). / Abstracts in English and Chinese. / Abstract --- p.I / List of Publications --- p.VI / Acknowledgements --- p.VIII / Table of Contents --- p.X / List of Figures --- p.XV / List of Tables --- p.XVIII / List of Abbreviations --- p.XIX / Chapter CHAPTER1 --- INTRODUCTION / Chapter 1.1 --- The Pancreas --- p.2 / Chapter 1.1.1 --- Structure of pancreas --- p.2 / Chapter 1.1.2 --- Structure and function of exocrine pancreas --- p.6 / Chapter 1.1.3 --- Structure and function of endocrine pancreas --- p.9 / Chapter 1.1.3.1 --- Pancreatic islet and islet cells --- p.9 / Chapter 1.1.3.2 --- Glucose-stimulated insulin secretion from islets --- p.12 / Chapter 1.2 --- Type 1 Diabetes Mellitus (T1DM) --- p.14 / Chapter 1.2.1 --- Pathophysiology of Diabetes Mellitus --- p.14 / Chapter 1.2.2 --- Autoimmunity in T1DM --- p.17 / Chapter 1.2.3 --- Management ofTlDM --- p.20 / Chapter 1.2.3.1 --- Insulin replacement --- p.20 / Chapter 1.2.3.2 --- Pancreas and islet transplantation --- p.21 / Chapter 1.2.3.3 --- Stem-cell-based transplantation --- p.22 / Chapter 1.3 --- The Adaptive Immune System --- p.26 / Chapter 1.3.1 --- T-lymphocytes --- p.26 / Chapter 1.3.2 --- B-lymphocytes --- p.29 / Chapter 1.3.3 --- Major histocompatibility complex (MHC) --- p.30 / Chapter 1.3.3.1 --- Classification of MHC molecules --- p.30 / Chapter 1.3.3.2 --- Structure of MHC class I and II molecules --- p.32 / Chapter 1.3.3.3 --- Function and regulation of MHC molecules --- p.34 / Chapter 1.3.4 --- HLA-G and its immuno-modulatory properties --- p.36 / Chapter 1.4 --- Transplantation Rejection --- p.40 / Chapter 1.4.1 --- Mechanisms involved in transplantation rejection --- p.40 / Chapter 1.4.2 --- Immunobiology of rejection --- p.41 / Chapter 1.4.2.1 --- Direct allorecognition pathway --- p.42 / Chapter 1.4.2.2 --- Indirect allorecognition pathway --- p.43 / Chapter 1.4.2.3 --- Semi-direct allorecognition pathway --- p.43 / Chapter 1.4.3 --- Xenotransplantation --- p.46 / Chapter 1.5 --- Cytokines and Immunity --- p.48 / Chapter 1.5.1 --- Interferons --- p.48 / Chapter 1.5.1.1 --- Interferon-γ and its immune regulation --- p.49 / Chapter 1.5.1.2 --- Effect and kinetics of interferon-γ on MHC molecules expression --- p.53 / Chapter 1.5.1.3 --- Regulation of interferon-γ production --- p.56 / Chapter 1.5.2 --- Interlukins --- p.58 / Chapter 1.5.2.1 --- IL-10 and its immune regulation --- p.58 / Chapter 1.5.2.2 --- IL-10 and HLA-G --- p.59 / Chapter 1.6 --- Stem Cells and their Immunogenicity --- p.62 / Chapter 1.6.1 --- Embroynic stem cells --- p.62 / Chapter 1.6.2 --- Mesenchymal stem cells --- p.64 / Chapter 1.6.3 --- Neural stem cells --- p.68 / Chapter 1.6.4 --- Fetal stem cells --- p.69 / Chapter 1.6.5 --- Potential immuno-study in human fetal pancreatic stem cells --- p.70 / Chapter 1.7 --- Aims and Objectives of study --- p.72 / Chapter CHAPTER2 --- MATERIALS AND METHODS / Chapter 2.1 --- Isolation of Pancreatic Progenitors (PPCs) from Human Fetal Pancreas and Induction of Islet-like Cell Cluster (ICCs) Differentiation --- p.75 / Chapter 2.1.1 --- Tissue procurement --- p.75 / Chapter 2.1.2 --- Tissue processing and PPCs culture --- p.75 / Chapter 2.1.3 --- In vitro differentiation of PPCs into ICCs --- p.78 / Chapter 2.1.4 --- Interferon-γ and IL-10 treatment --- p.80 / Chapter 2.2 --- Cell culture of human placental Choriocarcinoma JEG-3 Cell Line --- p.81 / Chapter 2.3 --- RNA Expression Detection --- p.82 / Chapter 2.3.1 --- RNA isolation --- p.82 / Chapter 2.3.2 --- Reverse transcriptase (RT) --- p.83 / Chapter 2.3.3 --- Design of primers for Polymerase Chain Reaction (PCR) and Real-time PCR --- p.84 / Chapter 2.3.4 --- PCR --- p.86 / Chapter 2.3.5 --- Real-time PCR analysis --- p.88 / Chapter 2.3.6 --- Calculation using the comparative CT method --- p.90 / Chapter 2.4 --- Flow Cytometry --- p.91 / Chapter 2.5 --- Western Blotting Analysis --- p.93 / Chapter 2.5.1 --- Protein extraction and quantification --- p.93 / Chapter 2.5.2 --- Western blotting --- p.93 / Chapter 2.6 --- Mixed Lymphocyte Reaction (MLR) --- p.95 / Chapter 2.6.1 --- Isolation of peripheral blood mononuclear cells (PBMCs) --- p.95 / Chapter 2.6.2 --- PPC-PBMCs MLR --- p.98 / Chapter 2.6.3 --- ICC-PBMCs MLR --- p.98 / Chapter 2.6.4 --- Proliferation assay --- p.99 / Chapter 2.7 --- ICC Transplantation --- p.101 / Chapter 2.7.1 --- Streptozotocin-induced diabetic animals for transplantation --- p.101 / Chapter 2.7.2 --- Procedures of ICCs transplantation --- p.102 / Chapter 2.8 --- Histological Analysis of ICC Graft --- p.105 / Chapter 2.8.1 --- H&E staining --- p.105 / Chapter 2.8.2 --- DAB staining --- p.106 / Chapter 2.8.3 --- Immunofluorescence staining --- p.107 / Chapter 2.9 --- Enzyme-linked Immunosorbent Assay (ELISA) --- p.109 / Chapter 2.10 --- Statistical Data Analysis --- p.110 / Chapter CHAPTER3 --- RESULTS / Chapter 3.1 --- Immuno-characterization of PPCs and ICCs --- p.112 / Chapter 3.2 --- Effect of cytokines on immune-properties of PPCs and ICCs --- p.115 / Chapter 3.2.1 --- Effect of lFN-γ on MHC-I expression in PPCs --- p.115 / Chapter 3.2.2 --- Effect of lFN-γ and IL-10 on HLA-G expression in PPCs and ICCs --- p.119 / Chapter 3.2.3 --- Effect of IFN-γ on B7H4 expression in PPCs --- p.123 / Chapter 3.3 --- Comparison of immune-properties of PPCs and ICCs from 1st and 2nd trimester --- p.125 / Chapter 3.3.1 --- Differential expression of MHC molecules in PPCs --- p.125 / Chapter 3.3.2 --- Different immune-related gene expression in PPCs and ICCs --- p.128 / Chapter 3.3.3 --- Comparison of IFN-γ activated MHC molecules expression in PPCs/ICCs --- p.134 / Chapter 3.3.4 --- Comparison of other IFN-γ activated genes expression in PPCs --- p.139 / Chapter 3.4 --- Mixed lymphocyte reaction of PPCs from 1st and 2nd trimester --- p.143 / Chapter 3.4.1 --- Effect of PPCs on proliferation of PBMC --- p.143 / Chapter 3.4.2 --- Effect of ICCs on proliferation of PBMC --- p.145 / Chapter 3.4.3 --- Effect of PPCs on cytokine production in PBMC --- p.149 / Chapter 3.5 --- Xenotransplantation of ICCs into diabetic mouse model --- p.152 / Chapter 3.5.1 --- Blood glucose level of diabetic mice after transplantation --- p.152 / Chapter 3.5.2 --- Histological evaluation of transplanted ICCs grafts --- p.154 / Chapter 3.5.3 --- Infiltration of CD45 into transplanted grafts of 1st and 2nd trimester --- p.158 / Chapter CHAPTER4 --- DISCUSSION / Chapter 4.1 --- Expression of selected immuno-regulated genes in PPCs and ICCs --- p.163 / Chapter 4.2 --- Effect of IFN-g and IL-10 on expression of immuno-regulated genes in PPCs and ICCs --- p.166 / Chapter 4.3 --- In vitro studies on immunogenicity of PPCs and ICCs from first and second trimester --- p.171 / Chapter 4.3.1 --- Immune-related genes expression --- p.171 / Chapter 4.3.2 --- IFN-γ activated gene expression --- p.173 / Chapter 4.3.3 --- Mixed lymphocyte reaction --- p.175 / Chapter 4.3.4 --- Cytokine production of PBMC in MLR --- p.179 / Chapter 4.4 --- In vivo Xenotransplantation of ICCs into diabetic mouse model --- p.181 / Chapter 4.5 --- Conclusion --- p.187 / Chapter 4.6 --- Further studies --- p.188 / Chapter CHAPTER5 --- BIBLIOGRAPHY / Bibliography by Alphabetical Order --- p.189
38

Studies on some factors critical for the development of pancreatic progenitor cells derived from human fetal pancreas.

January 2011 (has links)
Ng, Ka Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 179-204). / Abstracts in English and Chinese. / Abstract --- p.I / 摘要 --- p.IV / Publications --- p.VII / Acknowledgements --- p.VIII / Table of contents --- p.IX / List of figures --- p.XV / List of tables --- p.XVII / List of abbreviations --- p.XVIII / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- The Pancreas --- p.2 / Chapter 1.1.1 --- Anatomy of Pancreas --- p.2 / Chapter 1.1.2 --- The Exocrine Pancreas --- p.4 / Chapter 1.1.3 --- The Endocrine Pancreas --- p.5 / Chapter 1.1.3.1 --- Structure of Islets --- p.5 / Chapter 1.1.3.2 --- "Functions of α-, β-, y-, ð-, Σ-and PP-cells in Islets" --- p.7 / Chapter 1.1.4 --- Overview of Pancreas Development --- p.9 / Chapter 1.1.4.1 --- Organ Morphology --- p.10 / Chapter 1.1.4.2 --- Cyto-differentiation --- p.12 / Chapter 1.1.4.3 --- Control by Transcriptional Factors --- p.14 / Chapter 1.1.5 --- Postnatal Pancreas Development and Regeneration --- p.18 / Chapter 1.1.5.1 --- Proliferation of Pre-existing β-cells --- p.19 / Chapter 1.1.5.2 --- Neogenesis from Precursor Cells --- p.20 / Chapter 1.1.5.3 --- Transdifferentiation of other Cells --- p.20 / Chapter 1.2 --- Diabetes Mellitus --- p.22 / Chapter 1.2.1 --- Pathophysiology of Diabetes Mellitus and Current Treatments --- p.24 / Chapter 1.2.1.1 --- Type I Diabetes Mellitus --- p.24 / Chapter 1.2.1.2 --- Type II Diabetes Mellitus --- p.25 / Chapter 1.2.1.3 --- Gestational Diabetes --- p.27 / Chapter 1.2.1.4 --- Secondary Diabetes --- p.28 / Chapter 1.3 --- Stem Cell therapy --- p.29 / Chapter 1.3.1 --- Stem Cell --- p.29 / Chapter 1.3.1.1 --- Mesenchymal Stem Sell --- p.31 / Chapter 1.3.1.2 --- Embryonic Stem Cell --- p.35 / Chapter 1.3.1.3 --- Induced Pluripotent Stem Cell --- p.36 / Chapter 1.3.2 --- Islets Engineering --- p.37 / Chapter 1.3.2.1 --- Genetic Modification --- p.37 / Chapter 1.3.2.2 --- Directed Differentiation --- p.38 / Chapter 1.3.2.3 --- Microenvironment --- p.38 / Chapter 1.3.2.4 --- In vivo Regeneration --- p.39 / Chapter 1.3.2.5 --- Cell Fusions --- p.40 / Chapter 1.3.2.6 --- Combinatory Treatments --- p.40 / Chapter 1.4 --- The Vitamin A & Vitamin D System --- p.42 / Chapter 1.4.1 --- The Vitamin A --- p.42 / Chapter 1.4.2 --- Vitamin A Metabolism --- p.44 / Chapter 1.4.3 --- Roles of vitamin A in Pancreatic Development --- p.46 / Chapter 1.4.4 --- The Vitamin D --- p.48 / Chapter 1.4.5 --- Vitamin D Metabolism --- p.49 / Chapter 1.4.6 --- Metabolic Functions of Vitamin D in Islets --- p.51 / Chapter 1.4.7 --- Cod Liver Oil --- p.53 / Chapter 1.4.8 --- Interactions between Vitamin A and Vitamin D --- p.53 / Chapter 1.5 --- The Relations of Liver and Pancreas Development --- p.55 / Chapter 1.5.1 --- Endoderm Induction for Hepatic and Pancreatic Differentiation of ESCs --- p.55 / Chapter 1.5.2 --- Bipotential Precursor Population within Embryonic Endoderm --- p.56 / Chapter 1.5.3 --- Pancreatic Islets Promote Mature Liver Hepatocytes Proliferation --- p.57 / Chapter 1.5.4 --- Transdifferentiation --- p.57 / Chapter 1.5.5 --- Transplantation in Liver Niche Promotes Maturation of Insulin-Producing Cells --- p.60 / Chapter 1.5.6 --- Neuronal Relay from the Liver to Pancreatic --- p.61 / Chapter 1.5.7 --- Development of Islets in the Nile Tilapia --- p.62 / Chapter 1.6 --- The Insulin-like Growth Factor-I (IGF1) --- p.64 / Chapter 1.6.1 --- IGF1 System --- p.64 / Chapter 1.6.2 --- IGF 1 Regulation --- p.65 / Chapter 1.6.3 --- Roles of IGF 1 in Pancreatic Development and Regeneration --- p.68 / Chapter 1.7 --- Aims and Objectives of Study --- p.70 / Chapter Chapter 2 --- General Materials and Methods / Chapter 2.1 --- Pancreatic progenitor cells (PPCs) and liver stromal cells (LSCs) isolation and cell culture --- p.72 / Chapter 2.1.1 --- Tissue procurement --- p.72 / Chapter 2.1.2 --- PPC and LSC culture --- p.72 / Chapter 2.1.3 --- "Treatments of vitamin A, vitamin D and IGF 1" --- p.76 / Chapter 2.1.4 --- "Cell culture of Caco-2, HepG2 and DU-145" --- p.76 / Chapter 2.2 --- Induction of Islet-like Cell Clusters (ICCs) Differentiation --- p.77 / Chapter 2.2.1 --- In vitro Directed Differentiation --- p.77 / Chapter 2.2.2 --- In vitro LSC Microenvironment --- p.77 / Chapter 2.3 --- RNA Expression Detection --- p.79 / Chapter 2.3.1 --- RNA isolation --- p.79 / Chapter 2.3.2 --- Reverse Transcription --- p.79 / Chapter 2.3.3 --- Polymerase Chain Reaction (PCR) --- p.80 / Chapter 2.3.4 --- Realtime PCR --- p.81 / Chapter 2.4 --- Immunocytochemistry --- p.83 / Chapter 2.5 --- Western Blotting --- p.85 / Chapter 2.5.1 --- Protein extraction and quantification --- p.85 / Chapter 2.5.2 --- Western Blotting --- p.85 / Chapter 2.6 --- Enzyme-linked Immunosorbent Assay (ELISA) --- p.87 / Chapter 2.6.1 --- Detection of cell viability --- p.87 / Chapter 2.6.2 --- Detection of cell proliferation --- p.87 / Chapter 2.6.3 --- Measurement of Cell death --- p.88 / Chapter 2.6.4 --- Measurement of IGF 1 level in condition medium --- p.89 / Chapter 2.6.5 --- Measurement of glucose induced insulin secretion --- p.90 / Chapter 2.7 --- Regeneration model --- p.92 / Chapter 2.7.1 --- Regeneration model in neonatal-STZ rat --- p.92 / Chapter 2.7.2 --- Change in IGF1 expression in pancreas and liver --- p.92 / Chapter 2.8 --- Statistical Data Analysis --- p.93 / Chapter Chapter 3 --- Vitamin D and vitamin A receptor expression and the proliferative effects of ligand activation of these receptors on the development of pancreatic progenitor cells derived from human fetal pancreas. (Stem Cell Rev. 2011;7:53-63) / Chapter 3.1 --- Abstract --- p.95 / Chapter 3.2 --- Introduction --- p.97 / Chapter 3.3 --- Materials and Methods --- p.101 / Chapter 3.3.1 --- Fetal Tissue Procurement --- p.101 / Chapter 3.3.2 --- Culture of Pancreatic Progenitor Cells --- p.101 / Chapter 3.3.3 --- RNA Expression Analysis by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) --- p.102 / Chapter 3.3.4 --- Western Blot Analysis --- p.103 / Chapter 3.3.5 --- Immunocytochemstry --- p.105 / Chapter 3.3.6 --- PPC Proliferation Assays --- p.106 / Chapter 3.3.7 --- PPC Cell Death Assays --- p.107 / Chapter 3.3.8 --- Statistical Data Analysis --- p.108 / Chapter 3.4 --- Results --- p.110 / Chapter 3.4.1 --- "Expression and Localization of RAR, VDR and RXR, CYP26 and CYP24 in PPCs" --- p.110 / Chapter 3.4.2 --- Incubation of PPC with atRA Enhances PPC Viability due to Increased Proliferation and Anti-apoptosis --- p.111 / Chapter 3.4.3 --- Incubation of PPCs with Calcitriol Enhances Viability due to Increased Proliferation --- p.111 / Chapter 3.4.4 --- Both atRA and Calcitriol Induce Up-regulation of both the RAR and the VDR but not the RXR --- p.112 / Chapter 3.4.5 --- Combination Treatment with atRA and Calcitriol on Cell Viability and NGN3 Expression --- p.112 / Chapter 3.5 --- Discussion --- p.114 / Chapter Chapter 4 --- Human fetal liver stromal cell co-culture enhances the growth and differentiation of pancreatic progenitor cells into islet-like cell clusters (In submission to Gastroenterology) / Chapter 4.1 --- Abstract --- p.128 / Chapter 4.2 --- Introduction --- p.129 / Chapter 4.3 --- Materials and Methods --- p.133 / Chapter 4.3.1 --- Use of human and animal tissues --- p.133 / Chapter 4.3.2 --- "Cell preparation, characterizations and Differentiation" --- p.133 / Chapter 4.3.3 --- Examination of PPC growth and ICC differentiation and functions with LSC co-culture --- p.133 / Chapter 4.3.3 --- Identification of growth factors and investigation of their effects --- p.134 / Chapter 4.3.4 --- Statistical Analysis --- p.135 / Chapter 4.4 --- Results --- p.136 / Chapter 4.4.1 --- "Isolation, Culture and Characterizations of LSCs" --- p.136 / Chapter 4.4.2 --- Establishment of LSC co-culture system --- p.136 / Chapter 4.4.3 --- LSC co-culture enhances PPC-derived ICC differentiation --- p.137 / Chapter 4.4.4 --- Differential expression of mRNA for cytokines and growth factors between 1st and 2nd trimester LSCs --- p.138 / Chapter 4.4.5 --- Characterization of IGF 1 receptors in PPCs and the effects of exogenous IGF1 on PPC growth and ICC differentiation --- p.139 / Chapter 4.4.6 --- Neutralizing antibodies against IGF1R inhibit ICC differentiation --- p.140 / Chapter 4.5 --- Discussion --- p.142 / Chapter 4.6 --- Supplementary Materials and Methods --- p.147 / Chapter 4.6.1 --- Cell Preparation and culture --- p.147 / Chapter 4.6.2 --- In Vitro ICC differentiation --- p.148 / Chapter 4.6.3 --- RNA expression analysis --- p.149 / Chapter 4.6.4 --- Immunocytochemistry --- p.149 / Chapter 4.6.5 --- PPC viability and cell count assays --- p.150 / Chapter 4.6.6 --- IGF1 and insulin ELISA --- p.151 / Chapter 4.6.7 --- Western blotting analysis --- p.152 / Chapter 4.6.8 --- Neonatal streptozotocin regeneration model --- p.153 / Chapter Chapter 5 --- General Discussion and Future Studies / Chapter 5.1 --- General Discussion --- p.165 / Chapter 5.1.1 --- Proliferative effects and enhance expression of NGN3 by vitamin A and vitamin D on PPC --- p.166 / Chapter 5.1.2 --- Induction of PPC derived ICCs by LSCs --- p.169 / Chapter 5.1.3 --- Potential effects of liver stroma derived IGF1 on PPC derived ICCs differentiation --- p.172 / Chapter 5.1.4 --- Significance of islet engineering in the management of diabetes --- p.174 / Chapter 5.1.5 --- Conclusions --- p.176 / Chapter 5.2 --- Future Studies --- p.177 / Chapter Chapter 6 --- Reference / Reference --- p.180
39

Mecanismos de ação do palmitato como modulador da NADPH oxidase em ilhotas pancreáticas e linhagem INS-1 E. / Mechanisms of palmitate action as a modulator of NADPH oxidase in pancreatic islets and INS-1E cells.

Graciano, Maria Fernanda Rodrigues 01 March 2011 (has links)
A NADPH oxidase participa da secreção de insulina estimulada pela glicose e da produção de superóxido nas ilhotas pancreáticas. Nesse estudo, avaliamos o efeito do ácido palmítico na produção de superóxido e secreção de insulina por ilhotas pancreáticas de ratas e linhagem INS-1E. O palmitato aumentou a produção de superóxido por mecanismo dependente da ativação da PKC e da NADPH oxidase e da oxidação do ácido graxo. O ácido graxo causou a translocação da p47PHOX para a membrana plasmática, processo indicativo da ativação do complexo enzimático. A exposição de ilhotas ao palmitato causou o aumento do conteúdo proteico da p47PHOX e do RNA mensageiro da p22PHOX, gp91PHOX, p47PHOX, pró-insulina e do GPR40. A estimulação da secreção de insulina pelo ácido graxo na presença de alta glicose foi reduzida através do inibidor da NADPH oxidase e também pela inibição da expressão do GPR40 por RNA de interferência. A atividade da NADPH oxidase e a sinalização via GPR40 são mecanismos envolvidos no controle da secreção de insulina estimulada pelo palmitato. / The NADPH oxidase complex is involved in the glucose-stimulated insulin secretion and the superoxide production in pancreatic islets. In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and INS-1E cells. Palmitate increased superoxide production in a process dependent on the activation of PKC, NADPH oxidase and fatty acid oxidation. In fact, palmitate caused p47PHOX translocation to the plasma membrane. Exposure to palmitate for 1 h up-regulated the protein content of p47PHOX and the mRNA levels of p22PHOX, gp91PHOX, p47PHOX, proinsulin and the GPR40. Fatty acid stimulation of insulin secretion in the presence of a high glucose concentration was reduced by the inhibition of NADPH oxidase activity and by the inhibition of GPR40 expression by a small interference RNA. In conclusion, NADPH oxidase is an important source of palmitate-induced superoxide production in beta cells. The NADPH oxidase activity and GPR40 signaling are involved in the control of insulin secretion by palmitate.
40

Pancreatic Islet Transplantation : Modifications of Islet Properties to Improve Graft Survival

Cabric, Sanja January 2007 (has links)
<p>During the past decade clinical islet transplantation has become a viable strategy for curing type 1 diabetes. The limited supply of organs, together with the requirement for islets from multiple donors to achieve insulin independence, has greatly limited the application of this approach. </p><p>The islets are infused into the liver via the portal vein, and once exposed to the blood, the grafted tissue has been shown to be damaged by the instant blood-mediated inflammatory reaction (IBMIR), which is characterized by coagulation and complement activation as well as leukocyte infiltration into the islets. Islet revascularization is a subsequent critical step for the long-term function of the transplanted graft, which may partially be impeded by the IBMIR. </p><p>In this thesis, we have explored novel strategies for circumventing the effects of the IBMIR and facilitating islet revascularization.</p><p>Systemic inhibitors of the IBMIR are typically associated with an increased risk of bleeding. We therefore evaluated alternative strategies for modulating the islets prior to transplantation. We demonstrated, using an adenoviral vector, that a high level of expression and secretion of the anticoagulant hirudin could be induced in human islets. An alternative approach to limiting the IBMIR was developed in which anticoagulant macromolecular heparin complexes were conjugated to the islet surface. This technique proved effective in limiting the IBMIR in both an in vitro blood loop model and an allogeneic porcine model of islet transplantation. An increased adhesion of endothelial cells to the heparin-coated islet surface was demonstrated, as was the capacity of the heparin conjugate to bind the angiogenic factors VEGF and FGF; these results have important implications for the revascularization process.</p><p>The outcome of the work in this thesis suggests that modulation of the islet surface is an attractive alternative to systemic therapy as a strategy for preventing the IBMIR. Moreover, the same techniques can be employed to induce revascularization and improve the engraftment of the transplanted islets. Ultimately, improved islet viability and engraftment will make islet transplantation a more effective procedure and increase the number of patients whose diabetes can be cured.</p>

Page generated in 0.0835 seconds