• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicted Redidual Strength of Damaged IsoTruss® Structures

Carroll, Travis S. 26 December 2005 (has links) (PDF)
This thesis utilized a linear analytical approach to explore the damage tolerance or residual strength as a function of increasing damage in traditional single and hybrid-grid IsoTruss® structures. Residual strength was studied for structures subjected to axial compression, torsion and flexural bending, independently. Carbon/epoxy material properties were applied in all load cases, and fiberglass/epoxy material properties were also applied in the flexural bending case. Prior to imposing damage conditions, the IsoTruss® structures were parametrically optimized to achieve the highest strength-to-weight ratios. Typical compression strut, driveshaft, and utility pole specifications governed the design strength dimensions and boundary conditions. Damage growth was achieved by removing members from IsoTruss® structures progressively about the circumference in a symmetrical manner. The sequence of member removal, beginning with primary or secondary members, was examined, and is described as primary and secondary analyses. ABAQUS finite element analysis was employed to quantify the residual strength of each IsoTruss® configuration. Reduction in residual strength trends are compared to net section strength, which assumes a linear relationship between damage size and residual strength. Results indicate that the 6-node IsoTruss® configuration is the most damage tolerant structure in the sense that the 6-node configuration deviates the least from the net section strength. As more nodes are added, IsoTruss® structures behave more like a composite tube, exhibiting a brittle behavior characterized by an increase in strength reduction for a given damage size. Bending results reveal that carbon fiber IsoTruss® structures are more damage tolerant under primary bending conditions than fiberglass poles. On the other hand, fiberglass IsoTruss® poles prove to be more damage tolerant under secondary bending conditions than carbon fiber structures. Most importantly, however, hybrid-grid IsoTruss® poles are definitively more optimal structures than single-grid poles in terms of both strength-to-weight ratio and damage tolerance. The results and conclusions from this thesis provide benchmark capacities for mechanically manufactured IsoTruss® structures. Also included in this thesis is documentation of a special program written to analyze IsoTruss® structures.
2

Hydrodynamic Drag and Flow Visualization of IsoTruss Lattice Structures

Ayers, James T. 25 March 2005 (has links) (PDF)
Hydrodynamic drag testing was conducted for eleven different configurations of IsoTruss® lattice structures. Flow visualization of prototypical IsoTruss® wind towers was also performed using Particle Image Velocimetry instrumentation. The drag test and flow visualization specimens included 6-node and 8-node configurations, single and double-grid geometries, thick and thin member sizes, smooth and rough surface finishes, a helical-only structure, and a smaller outer diameter test specimen. Three sets of hydrodynamic drag tests were conducted in a closed-circuit water tunnel: 1) orientation drag tests, 2) water velocity drag tests, and 3) height variation drag tests. The orientation drag tests measured the hydrodynamic drag force of the IsoTruss® test specimens at five different orientations with an average water velocity of 1.43 mph (0.64 m/s). The water velocity drag tests measured the maximum drag for each IsoTruss® test specimen at water velocities ranging from 0.0 to an average 1.43 mph (0.64 m/s). Based on the average outer structure diameter of the IsoTruss® specimens, the water velocities corresponded to a Reynolds number range of 7,000 to 80,000. Based on the average member diameter, the corresponding Reynolds number spanned from 600 to 3,000. In addition, the height variation drag tests were performed by vertically extracting the IsoTruss® test specimens from the test section at four different immersed height levels, with a maximum immersed height of 7.22 in (18.1 cm). The height variation testing corresponded to a Froude number range of 0.40 to 0.90. The IsoTruss® specimens exhibited an average lower drag coefficient based on the projected cylindrical area than the smooth circular cylinder data throughout the Reynolds number and Froude number ranges. The drag coefficient based on solid member area showed no correlation when shown as a function of the solidity ratio. However, for the drag coefficient calculated from the solid member projected area, the data for all IsoTruss® test specimens collapsed to a 2nd order polynomial when presented as a function of the Froude number, with an R2 of 0.99. Conversely, no significant relationship was shown when the drag coefficient based on projected cylindrical area was plotted versus the Froude number. The hydrodynamic data was compared to aerodynamic data, and the orientation testing results were identical. The hydrodynamic data differed by an average of 17% compared to the non-dimensional aerodynamic results. The flow visualization research revealed that the velocity returned to 2% of the freestream velocity at 1.24 diameters upstream from the prototypical IsoTruss® wind tower. Likewise, the velocity returned to a maximum 4% of the freestream velocity at 0.94 diameters sidestream of the model IsoTruss® wind tower.

Page generated in 0.1047 seconds