Spelling suggestions: "subject:"isolated horizon"" "subject:"lsolated horizon""
1 |
New Applications of Asymptotic Symmetries Involving Maxwell FieldsMao, Pujian 28 September 2016 (has links)
In this thesis, several new aspects of asymptotic symmetries have been exploited.Firstly, we have shown that the asymptotic symmetries can be enhanced tosymplectic symmetries in three dimensional asymptotically Anti-de Sitter (AdS) space-time with Dirichletboundary conditions. Such enhancement providesa natural connection between the asymptotic symmetries in the far region i.e. closeto the boundary) and the near-horizon region, which leads to a consistenttreatment for both cases. The second investigation in three dimensional space-time is to study theEinstein-Maxwell theory including asymptotic symmetries, solutionspace and surface charges with asymptotically flat boundary conditionsat null infinity. This model allows one to illustrate several aspectsof the four dimensional case in a simplified setting. Afterwards, we givea parallel analysis of Einstein-Maxwell theory in the asymptotically AdScase.Another new aspect consists in demonstrating a deep connection between certainasymptotic symmetry and soft theorem. Recently, a remarkable equivalence wasfound between the Ward identity of certain residual (large) U(1) gauge transformations and the leadingpiece of the soft photon theorem. It is well known that the softphoton theorem includes also a sub-leading piece. We have proven thatthe large U(1) gauge transformation responsible for the leading soft factorcan also explain the sub-leading one.In the last part of the thesis, wewill investigate the asymptotic symmetries near the inner boundary. Asa null hypersurface, the black hole horizon can be considered as an innerboundary. The near horizon symmetries create “soft” degrees of freedom. Wehave generalised such argument to isolated horizon and have shown that those “soft” degreesof freedom of an isolated horizon are equivalent to its electric multipolemoments. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
2 |
Sur les propriétés thermodynamiques et quantiques des trous noirs / On thermodynamic and quantum properties of black holesFrodden, Ernesto 15 October 2013 (has links)
Les trous noirs sont étudiés d'un point de vue théorique. Les propriétés thermodynamiques et quantiques des trous noirs sont abordées à travers des nouvelles perspectives. On explore différents problèmes logiquement reliés: depuis les lois de la mécanique des trous noirs, en passant par la function partition Euclidienne des trous noirs, jusqu'aux modèles microscopiques quantiques et granulaires.L'approche repose sur deux principes: la thermodynamique importante pour les trous noirs se situe près de l'horizon et la géométrie quantique de l'espace-temps est granuleuse.On examine la première loi de la mécanique des trous noirs avec une perspective quasilocal basée sur des observateurs près de l'horizon. Il s'avère que la première loi peut être simplement reformulée comme la variation de l'aire de l'horizon. Ensuite, on examine la fonction de partition Euclidienne à partir de la nouvelle perspective quasilocal, et on reproduit l'entropie de Bekenstein-Hawking ainsi que l'energie quasilocal nouvellement introduite.L'approche quasilocal peut être abordée par un point de vue basé sur les Horizons Isolés. Dans ce cadre, on explore la quantification de l'Horizon Isolé rotatoire, en analysant la structure symplectique, et en utilisant l'espace de Hilbert de la Gravitation Quantique à Boucles.Finalement, on étudie les conséquences macroscopiques du modèle granulaire quantique basé sur la Gravitation Quantique à Boucles. L'accent est mis sur le modèle de trou noir en rotation, les résultats ne sont pas concluants du fait que plusieurs hypothèses doivent être posées. Cependant, la perspective est prometteuse. Certains des résultats, comme l'entropie, peuvent être reproduits. / Black holes are studied from a theoretical point of view. The thermodynamics and quantum properties are addressed from a new perspective. A range of logically connected problems are explored: Starting from the laws of black hole mechanics, going through the Euclidean partition function, to the microscopic quantum granular models.The approach is supported by two guiding principles: What is physically relevant for black hole thermodynamics lays close to the horizon and the quantum geometry of the spacetime is coarse-grained.The first law of black hole mechanics is reviewed from the new quasilocal perspective based on near horizon observers. It turns out that the first law can be reformulated as variations of the area of the horizon. On the same grounds, the semiclassical Euclidean partition function is reviewed from the new quasilocal perspective. The framework reproduces the classic Bekenstein-Hawking entropy and the newly introduced quasilocal energy.The quasilocal approach can also be addressed by using Isolated Horizons. The quantization procedures are explored for the rotating Isolated Horizon starting from a symplectic structure analysis, and using the Loop Quantum Gravity Hilbert space. Finally, through a statistical analysis, the macroscopic consequences of the quantum granular model based on the Loop Quantum Gravity approach are studied. Special emphasis is put on the rotating quantum black hole model, however the results are not conclusive as several assumptions should be made on the way. Nevertheless, the perspective is promising as some of the semiclassical results, for instance the entropy, can be reproduced.
|
Page generated in 0.0381 seconds