Spelling suggestions: "subject:"isoterma, biodiesel"" "subject:"isotermas, biodiesel""
1 |
Purifica??o de glicerol utilizando diferentes adsorventes: An?lise t?cnica e termodin?mica / Glycerol purification using different adsorbents: Technical and thermodynamic analysisALVES, Amanda de Paula 23 February 2017 (has links)
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-09-12T19:05:23Z
No. of bitstreams: 1
2017 - Amanda de Paula Alves.pdf: 2949048 bytes, checksum: 68f405efb8be6119401dfd85e1d5768a (MD5) / Made available in DSpace on 2017-09-12T19:05:23Z (GMT). No. of bitstreams: 1
2017 - Amanda de Paula Alves.pdf: 2949048 bytes, checksum: 68f405efb8be6119401dfd85e1d5768a (MD5)
Previous issue date: 2017-02-23 / The large amount of glycerol, produced in the last decades, generated as a by product of biodiesel production is object of inumerous studies searching for different technologies for its purification. Crude glycerol obtained as a by-product in the transesterification process is composed of alcohol, water, inorganic salts, free fatty acids, mono-, di-, triglycerides, among other organic materials and wastes in different concentrations. It is of extreme importance the purification of glycerol in order to reduce environmental problems due to its accumulation. There are current effective technologies in purifying and refining crude glycerol. However, they are considered unfeasible for small and medium production units due to the high cost and high energy demand. In this way, it is essential that new purification routes of low cost and high efficiency, as well as new markets, be developed. The adsorption process is promising and very favorable technique to remove the contaminants from glycerin due to its low cost, simplicity of design and operation. In this point of view, the objective of this work was to select an adsorbent for the purification of crude glycerol obtained from the transesterification reaction of residual oil. The evaluation of the efficiency and the best operacional conditions were studied using three types of adsorbents: Pure-Flo Supreme B81 clarifying clay, activated charcoal and diatomaceous earth. Preliminary adsorption experiments were carried out using a synthetic solution of glycerin and soybean oil, in order to verify the influence of glycerin concentration in the solution, as well as the behavior of the glycerol contaminants in the adsorption process. In order to reach the objective, the influence and optimization of the process variables as temperature (298.15, 305.65 and 313.15 K), amount of adsorbent (1.2, 1.8 and 2.4 g) and glycerol concentration (30, 50 and 70% v/v) were evaluated through an experimental design. The most significant variable was glycerol concentration, and results indicated high glycerol content after purification: 97.25% for diatomaceous earth, 95.59% for activated carbon and 90.26% for clay. Through the optimization of these variables, experiments were carried out to study the thermodynamics and kinetics of the reaction. The equilibrium time was less than 60 minutes for the three adsorbents. The negative values of Gibbs free energy (?G) showed that the adsorption of the contaminants is a spontaneous process. The negative values for enthalpy change (?H) and positive entropy (?S) values for clay and activated carbon indicate an exothermic nature and that the contaminant molecules are more randomnless in the adsorbed state than in solution. The positive value of ?H for diatomaceus earth indicates that the adsorption process for this adsorbent is endothermic. The adsorption results obtained at 298.15, 305.65 and 313.15 K showed that the experimental data were well correlated with the Langmuir, Freundlich and Redlich-Peterson isotherms models. The purification of crude glycerol using the same adsorbents did not show an effective result. The results showed that the adsorbents were not able to adsorb the impurities, but rather a small amount of glycerol. The adsorption carried out for purification did not clarify the glycerin, concluding that only the adsorption process is not suitable for purification of the crude glycerol, and a pre-purification step is necessary for the previous removal of the contaminants. / O excedente de glicerol produzido nas ?ltimas d?cadas, gerado como subproduto da produ??o de biodiesel, est? associado a constantes pesquisas por fontes alternativas de energia e vem criando uma demanda na busca de diferentes tecnologias para sua purifica??o. A glicerina bruta obtida como subproduto no processo de transesterifica??o ? composta por ?lcool, ?gua, sais inorg?nicos, ?cidos graxos livres, mono-, di-, triglicer?deos, entre outras mat?rias org?nicas e res?duos em diferentes quantidades. ? de extrema import?ncia a purifica??o do glicerol, a fim de reduzir problemas ambientais devido ao seu ac?mulo. Existem tecnologias atuais eficazes na purifica??o e refino do glicerol bruto. Por?m, s?o consideradas invi?veis para pequenas e m?dias produ??es, devido ?s restri??es de custos e alta demanda energ?tica. Dessa forma, ? indispens?vel que novas rotas de purifica??o de menor custo e maior efici?ncia, assim como novos mercados, sejam desenvolvidos. A adsor??o desponta como uma t?cnica promissora e muito favor?vel para a remo??o dos contaminantes da glicerina, devido ao seu baixo custo, simplicidade de projeto e opera??o. Diante do exposto, o objetivo deste trabalho foi selecionar um adsorvente para a purifica??o do glicerol bruto obtido da rea??o de transesterifica??o de ?leo residual. Para a avalia??o da efici?ncia e escolha das melhores condi??es de purifica??o, foram avaliados tr?s tipos de adsorventes: argila clarificante Pure-Flo Supreme B81, carv?o ativado e terra diatom?cea. Experimentos de adsor??o foram realizados utilizando uma solu??o sint?tica de glicerina P.A. e ?leo de soja, com o intuito de verificar a influ?ncia da concentra??o da glicerina na solu??o, assim como o comportamento dos contaminantes do glicerol no processo de adsor??o. Para atingir o objetivo, avaliou-se a influ?ncia e otimiza??o das vari?veis de processo como temperatura (298,15, 305,65 e 313,15 K), quantidade de adsorvente (1,2, 1,8 e 2,4 g) e concentra??o de glicerol (30, 50 e 70% v/v) atrav?s de um planejamento experimental. A vari?vel mais significativa foi a concentra??o de glicerol, e resultados indicaram alto teor de glicerol ap?s a purifica??o: 97,25% para terra diatom?cea, 95,59% para carv?o e 90,26% para argila. Al?m disso, foram realizados experimentos para o estudo da termodin?mica e cin?tica da rea??o e o tempo necess?rio para o sistema alcan?ar o equil?brio foi inferior a 60 minutos para os tr?s adsorventes. Os valores negativos da varia??o da energia livre de Gibbs (?G) mostraram que a adsor??o dos contaminantes ? um processo espont?neo. Os valores negativos para varia??o de entalpia (?H) e os valores positivos de entropia (?S) para argila e carv?o ativado, indicam uma natureza exot?rmica e que as mol?culas dos contaminantes encontram-se mais desordenadas no estado adsorvido do que em solu??o. O valor positivo de ?H para a terra diatom?cea indica que o processo de adsor??o para esse adsorvente ? endot?rmico. As an?lises dos resultados de adsor??o obtidos nas temperaturas de 298,15, 305,65 e 313,15 K, mostraram que os dados experimentais foram bem correlacionados ?s isotermas de Langmuir, Freundlich e Redlich Peterson. Utilizando as mesmas vari?veis para o processo de adsor??o usando o glicerol bruto, os resultados mostraram que os adsorventes n?o foram capazes de adsorver as impurezas, mas sim glicerol. A adsor??o realizada para purifica??o n?o clarificou a glicerina, indicando que n?o houve remo??o das impurezas, concluindo que somente o processo de adsor??o n?o ? apropriado para purifica??o do glicerol bruto, sendo necess?rio uma pr?-purifica??o para pr?via remo??o de alguns contaminantes.
|
Page generated in 0.0664 seconds