• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study of the Astrophysically Important States of 31S via the 32S(d,t)31S Reaction

Irvine, Dan T. 04 1900 (has links)
<p>The astrophysical <sup>30</sup>P(<em>p</em>,<em>γ</em>)<sup>31</sup>S reaction rate is a key quantity used in both classical nova and type I X-ray burst models that predict isotopic abundances produced during nucleosynthesis in the outburst. Currently, uncertainties in <sup>31</sup>S structure parameters lead to a variation in the reaction rate by a factor of 20 at nova temperatures causing predicted isotopic abundance ratios in the Si-Ar mass region to vary by factors of up to 4. The <sup>30</sup>P(<em>p</em>,<em>γ</em>)<sup>31</sup>S reaction rate can be determined indirectly by measuring transfer reactions populating excited states in <sup>31</sup>S. Nuclear structure information for <sup>31</sup>S resonant states above the proton threshold of 6131 keV and within the Gamow window that contribute most significantly to the reaction rate can be used to re-evaluate the rate for nova and type I X-ray burst temperatures and reduce current uncertainties. We have performed an experiment in order to study the level structure of <sup>31</sup>S via the <sup>32</sup>S(<em>d</em>,<em>t</em>)<sup>31</sup>S single-nucleon transfer reaction using the MP tandem accelerator and Q3D magnetic spectrograph at MLL in Munich, Germany. Excited states of <sup>31</sup>S in the 6-7 MeV region were observed and spin-parity constraints have been suggested. In this work we describe the experimental setup, data analysis and results for both experiments and provide recommendations for further investigation of the <sup>30</sup>P(<em>p</em>,<em>γ</em>)<sup>31</sup>S astrophysical reaction rate.</p> / Master of Science (MSc)

Page generated in 0.0436 seconds