• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metabolism of isovanillin by aldehyde oxidase, xanthine oxidase, aldehyde dehydrogenase and liver slices.

Panoutsopoulos, Georgios I., Beedham, Christine January 2005 (has links)
No / Aromatic aldehydes are good substrates of aldehyde dehydrogenase activity but are relatively poor substrates of aldehyde oxidase and xanthine oxidase. However, the oxidation of xenobiotic-derived aromatic aldehydes by thelatter enzymes has not been studied to any great extent. The present investigation compares the relative contribution of aldehyde dehydrogenase, aldehyde oxidase and xanthine oxidase activities in the oxidation of isovanillin in separate preparations and also in freshly prepared and cryopreserved liver slices. The oxidation of isovanillin was also examined in the presence of specific inhibitors of each oxidizing enzyme. Minimal transformation of isovanillin to isovanillic acid was observed in partially purified aldehyde oxidase, which is thought to be due to residual xanthine oxidase activity. Isovanillin was rapidly metabolized to isovanillic acid by high amounts of purified xanthine oxidase, but only low amounts are present in guinea pig liver fraction. Thus the contribution of xanthine oxidase to isovanillin oxidation in guinea pig is very low. In contrast, isovanillin was rapidly catalyzed to isovanillic acid by guinea pig liver aldehyde dehydrogenase activity. The inhibitor studies revealed that isovanillin was predominantly metabolized by aldehyde dehydrogenase activity. The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared or cryopreserved liver slices has not been previously reported. In freshly prepared liver slices, isovanillin was rapidly converted to isovanillic acid, whereas the conversion was very slow in cryopreserved liver slices due to low aldehyde dehydrogenase activity. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. It is therefore concluded that isovanillin is predominantly metabolized by aldehyde dehydrogenase activity, with minimal contribution from either aldehyde oxidase or xanthine oxidase.
2

Enzymatic oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared Guinea pig liver slices

Panoutsopoulos, Georgios I., Beedham, Christine January 2005 (has links)
No / Background/Aims: The oxidation of xenobiotic-derived aromatic aldehydes with freshly prepared liver slices has not been previously reported. The present investigation compares the relative contribution of aldehyde oxidase, xanthine oxidase and aldehyde dehydrogenase activities in the oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared liver slices. Methods: Vanillin, isovanillin or protocatechuic aldehyde was incubated with liver slices in the presence/absence of specific inhibitors of each enzyme, followed by HPLC. Results: Vanillin was rapidly converted to vanillic acid. Vanillic acid formation was completely inhibited by isovanillin (aldehyde oxidase inhibitor), whereas disulfiram (aldehyde dehydrogenase inhibitor) inhibited acid formation by 16% and allopurinol (xanthine oxidase inhibitor) had no effect. Isovanillin was rapidly converted to isovanillic acid. The formation of isovanillic acid was not altered by allopurinol, but considerably inhibited by disulfiram. Protocatechuic aldehyde was converted to protocatechuic acid at a lower rate than that of vanillin or isovanillin. Allopurinol only slightly inhibited protocatechuic aldehyde oxidation, isovanillin had little effect, whereas disulfiram inhibited protocatechuic acid formation by 50%. Conclusions: In freshly prepared liver slices, vanillin is rapidly oxidized by aldehyde oxidase with little contribution from xanthine oxidase or aldehyde dehydrogenase. Isovanillin is not a substrate for aldehyde oxidase and therefore it is metabolized to isovanillic acid predominantly by aldehyde dehydrogenase. All three enzymes contribute to the oxidation of protocatechuic aldehyde to its acid.

Page generated in 0.0439 seconds