• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Induction of the isthmic organizer and specification of the neural plate border

Patthey, Cédric January 2008 (has links)
The vertebrate nervous system is extremely complex and contains a wide diversity of cell types. The formation of a functional nervous system requires the differential specification of progenitor cells at the right time and place. The generation of many different types of neurons along the rostro-caudal axis of the CNS begins with the initial specification of a few progenitor domains. This initial coarse pattern is refined by so-called secondary organizers arising at boundaries between these domains. The Isthmic Organizer (IsO) is a secondary organizer located at the boundary between the midbrain and the hindbrain. Although the function and maintenance of the IsO are well understood, the processes underlying its initial specification have remained elusive. In the present work we provide evidence that convergent Wnt and FGF signals initiate the specification of the IsO during late gastrulation as part of the neural caudalization process. The initial step in the generation of the nervous system is the division of the embryonic ectoderm into three cell populations: neural cells giving rise to the CNS, neural plate border cells giving rise to the peripheral nervous system, and epidermal cells giving rise to the outer layer of the skin. While the choice between neural and epidermal fate has been well studied, the mechanism by which neural plate border cells are generated is less well understood. At rostral levels of the neuraxis, the neural plate border gives rise to the olfactory and lens placodes, thickenings of the surface ectoderm from which sensory organs are derived. More caudally, the neural plate border generates neural crest cells, a transient population that migrates extensively and contributes to neurons and glia of the peripheral nervous system. How the early patterning of the central and peripheral nervous systems are coordinated has remained poorly understood. Here we show that the generation of neural plate border cells is initiated at the late blastula stage and involves two phases. During the first phase, neural plate border cells are exposed to Wnt signals in the absence of BMP signals. Simultaneous exposure to Wnt and BMP signals at this early stage leads to epidermal induction. Wnt signals induce expression of Bmp4, thereby regulating the sequential exposure of cells to Wnt and BMP signals. During the second phase, at the late gastrula stage, BMP signals play an instructive role to specify neural plate border cells of either placodal or neural crest character depending on the status of Wnt signaling. At this stage, Wnt signals promote caudal character simultaneously in the neural plate border and in the neural ectoderm. Thus, the choice between epidermal and neural plate border specification is mediated by an interplay of Wnt and BMP signals that represents a novel mechanism involving temporal control of BMP activity by Wnt signals. Moreover, the early development of the central and peripheral nervous systems are coordinated by simultaneous caudalization by Wnt signals.
2

Early Rostrocaudal Patterning of the CNS

Nordström, Ulrika January 2005 (has links)
The transformation of an initially uniform population of epiblast cells into an intricately complex central nervous system (CNS) is one of the most fascinating processes during embryonic development. Presumptive neural cells are initially specified as cells of forebrain character. Studies in various vertebrates have indicated that cells of more caudal neural character, that will generate the brain stem and spinal cord, are generated through the reprogramming of these initial rostral cells. The initial regionalization of these neural progenitor cells is central to all further diversification of neuronal cell types and the subsequent formation of functional euronal circuits. The aim of this thesis has been to enhance our understanding of which stages of embryonic development that are critical for the initial rostrocaudal regionalization of neural precursor cells, and which signaling mechanisms that orchestrate this early diversification. Both human and chick embryos have the shape of a flat disc during gastrulation. At this early stage, the chick neural plate is already regionalized and cells positioned at distinct rostrocaudal levels are specified to generate cells exhibiting a gene expression profile characteristic of the forebrain, midbrain, rostral hindbrain and caudal spinal cord, respectively. In addition, the Isthmic organizer (IsO), a secondary signaling centre at the midbrain–hindbrain border that is required for the further development of this region, is also specified already at the gastrula stage. Caudal neural character is induced by signals from adjacent tissues - the primitive streak and the paraxial mesoderm. Wingless/Wnts, Fibroblastic growth factors (FGFs) and retinoids (RA) are signaling molecules that have been proposed to promote caudal embryonic development, and exhibit spatio- emporal expression patterns that coincide with early caudalizing activities. The caudalizing activity that emanates from the gastrula stage paraxial mesoderm is mediated by Wnt signals, and the induction of caudal neural character by Wnts results from a direct action on neural precursor cells. In the presence of FGF activity, graded Wnt signaling is sufficient to induce cells exhibiting caudal forebrain, midbrain and rostral hindbrain character. The discrimination between rostral hindbrain and caudal spinal cord character appear to depend on a gradient of both Wnt and FGF signals. At hindbrain and spinal cord levels the patterned generation of neural progenitor cells along the rostrocaudal axis controls the generation of different classes of motor neurons in response to diffusible Sonic hedgehog (Shh) signals. Gastrula stage Wnt signaling is also required for this subsequent generation of motor neuron subtypes characteristic of the hindbrain and spinal cord. Later, at the early somite stage, cells characteristic of the caudal hindbrain and rostral spinal cord are specified adjacent to RA producing paraxial mesoderm. Opponent RA and FGF signals appear to act on, and refine the rostrocaudal identity of the initial hindbrain and spinal cord cells induced by gastrula stage Wnt based signals. Consistently, combinatorial Wnt, FGF and/or RA signals are sufficient to reconstruct neural progenitor cells that differentiate into motor neurons characteristic of the caudal hindbrain, rostral spinal cord and caudal spinal cord, respectively, in response to Shh. / Transformationen av en initialt uniform cellpopulation till något så komplext som det centrala nervsystemet (CNS) är en av de mest fascinerande processerna under fosterutvecklingen. Anlaget till neuronala celler är initialt programmerade att generera nervceller som är typiska för den blivande hjärnan (cerebrum). Forskning på olika vertebrata modell-organsimer har klargjort att nedre regioner av CNS, hjärnstammen lillhjärnan och ryggmärgen, genereras genom reprogrammering av dessa initiala celler. Målet med avhandlingsarbetet har varit att öka förståelsen för vilka perioder under fosterutveckingen som är kritiska för den initiala induktionen av neuronala celltyper som är specifika för dessa olika regioner, samt vilka signalerings mekanismer som styr den initiala re-programmeringen. Under gastruleringen bildar anlaget till neuronala celler en, till synes uniform, platta medialt i ektodermet i både humana-, och kyckling embryon. Anlaget till neuronal vävnad är dock redan under detta tidiga utvecklingsstadie indelat i regioner. Celler inom en specifik region är programmerade att generera celler med en genexpressions-profil som är specifik för anlaget till hjärnan, de övre delarna av hjärnstammen (diencephalon, mesencephalon, metencephalon) eller den nedre delen av ryggmärgen. Även Isthmus – ett sekundärt organisations centra som bildas i konstriktionen mellan mesencephalon och metencephalon, och som behövs för den senare utvecklingen av dessa regioner – specificeras redan på gastrula stadiet. Dessa nedre neuronala celltyper induceras av signal molekyler från närliggande vävnader som t.ex. primitivstrimman och det paraxiala mesodermet. Wingless/Wnt, Fibroblast tillväxtfaktorer (FGFs) samt vitamin A metaboliter (retinoider, RA) är exempel på signalmolekyler som påverkar de nedre vävnaderna under tidig embryonal utveckling. Dessutom indikerar spatialt och temporalt reglerade genexpressionsmönster att närvaro av dessa signalerings proteiner sammanträffar med när och var nedre neuronala celltyper specificeras. Den signal aktivitet som avges från det paraxiala mesodermet i det gastrulerande embryot medieras av Wnt signalering. För induktion av nedre neuronala identiteter krävs Wnt signalering i de presumtivt neuronala cellerna. I närvaro av FGF signalerings aktivitet är det tillräckligt med en stigande gradient av Wnt signalering för att succesivt generera celler med en genexpressions profil som är specifik för diencephalon, mesencephalon och metencephalon. Distinktionen mellan, metencephalon och nedre ryggmärgs identitet verkar vara resultatet av en gradient av både Wnt och FGF signalering. När det paraxiala mesodermet börjar bilda somiter har även celler med en genexpressions-profil som är specifik för den förlängda märgen (myelencephalon) och den övre delen av ryggmärgen blivit specificerade. Dessa celltyper bildas i regioner där det närliggande paraxiala mesodermet producerar RA. En gradient av Wnt och FGF signalering ger upphov till en initial nedre celltyps identitet som krävs för att dessa celler ska kunna svara på RA signaleringen. Antagoniserande aktiviteter av RA och FGF signalering avgör vilka celler som sedermera kommer att ge upphov till förlängda märgen eller övre-, respektive, nedre ryggmärgen. Senare under utvecklingen bildas olika regionspecifika klasser av motorneuroner i bla. förlängda märgen och ryggmärgen. Den initiala, Wnt medierade, regionaliseringen av neuronala celltyper är central även för denna process. Dessutom kan olika klasser av motorneuroner, specifika för den förlängda märgen, respective övre-, och nedre ryggmärgs regionerna, rekonstrueras in vitro genom att reprogrammera naivt neuroepitel mha. en kombination av Wnt, RA och/eller FGF.
3

Mechanism of cell adhesion at the midbrain-hindbrain neural plate in the teleost Danio rerio

Kadner, Diana 30 July 2009 (has links) (PDF)
The correct development of multicellular organisms is tightly regulated by intrinsic and extrinsic factors at specific time points. Disturbance on any level of these multiple processes may result in drastic phenotypes or eventually death of the organism. The midbrain-hindbrain boundary (also termed isthmic organizer) is a region of high interest as well in early as also in later development. The isthmic region carries organizer identity by the expression and subsequent release of FGF8. False patterning events of this region in early developmental stages would therefore display dramatic results over time. As it has been shown that the midbrain-hindbrain boundary (mhb) in the zebrafish is a compartment (or lineage restriction) boundary I tried to understand the underlying molecular mechanism for its correct establishment. In this work I focused both on embryological, molecular and genetic means to characterize involved molecules and mechanisms. In the first part of the thesis I followed in vivo cell transplantation assays, having started with an unbiased one. Cells of either side the mhb were challenged with this boundary by bringing them into direct cell contact with their ectopic counterpart. In a biased approach, cells overexpressing mRNA of specific candidate genes were transplanted and their clonal distribution in host embryos was analyzed. In the second part of the thesis I started interfering with specific candidate genes by transiently knocking down their protein translation. The adhesion molecules of the Eph/ephrin class had been shown to restrict cell mixing and thereby creating compartment boundaries in other tissues, such as the hindbrain, in the zebrafish and other organisms. Additionally, we generated several stable genetic mutant lines in cooperation with the Tilling facility at the Max-Planck-Institute. The only acquired potential null mutant ephrinB2bhu2971 was analyzed and characterized further. I observed that a knock down or knock out of only one of the ephrinB2 ligands does not seem to be sufficient for a loss of compartment boundary formation. The combinatory approach of blocking translation of EphrinB2a in ephrinB2bhu2971 mutants gave very complex and interesting phenotypes, which need to be investigated further.
4

Mechanism of cell adhesion at the midbrain-hindbrain neural plate in the teleost Danio rerio

Kadner, Diana 09 June 2009 (has links)
The correct development of multicellular organisms is tightly regulated by intrinsic and extrinsic factors at specific time points. Disturbance on any level of these multiple processes may result in drastic phenotypes or eventually death of the organism. The midbrain-hindbrain boundary (also termed isthmic organizer) is a region of high interest as well in early as also in later development. The isthmic region carries organizer identity by the expression and subsequent release of FGF8. False patterning events of this region in early developmental stages would therefore display dramatic results over time. As it has been shown that the midbrain-hindbrain boundary (mhb) in the zebrafish is a compartment (or lineage restriction) boundary I tried to understand the underlying molecular mechanism for its correct establishment. In this work I focused both on embryological, molecular and genetic means to characterize involved molecules and mechanisms. In the first part of the thesis I followed in vivo cell transplantation assays, having started with an unbiased one. Cells of either side the mhb were challenged with this boundary by bringing them into direct cell contact with their ectopic counterpart. In a biased approach, cells overexpressing mRNA of specific candidate genes were transplanted and their clonal distribution in host embryos was analyzed. In the second part of the thesis I started interfering with specific candidate genes by transiently knocking down their protein translation. The adhesion molecules of the Eph/ephrin class had been shown to restrict cell mixing and thereby creating compartment boundaries in other tissues, such as the hindbrain, in the zebrafish and other organisms. Additionally, we generated several stable genetic mutant lines in cooperation with the Tilling facility at the Max-Planck-Institute. The only acquired potential null mutant ephrinB2bhu2971 was analyzed and characterized further. I observed that a knock down or knock out of only one of the ephrinB2 ligands does not seem to be sufficient for a loss of compartment boundary formation. The combinatory approach of blocking translation of EphrinB2a in ephrinB2bhu2971 mutants gave very complex and interesting phenotypes, which need to be investigated further.
5

Cerebellar Development and Neurogenesis in Zebrafish

Kaslin, Jan, Brand, Michael 19 March 2019 (has links)
Cerebellar organization and function have been studied in numerous species of fish. Fish models such as goldfish and weakly electric fish have led to important findings about the cerebellar architecture, cerebellar circuit physiology and brain evolution. However, most of the studied fish models are not well suited for developmental and genetic studies of the cerebellum. The rapid transparent ex utero development in zebrafish allows direct access and precise visualization of all the major events in cerebellar development. The superficial position of the cerebellar primordium and cerebellum further facilitates in vivo imaging of cerebellar structures and developmental events at single cell resolution. Furthermore, zebrafish is amenable to high-throughput screening techniques and forward genetics because of its fecundity and easy keeping. Forward genetics screens in zebrafish have resulted in several isolated cerebellar mutants and substantially contributed to the understanding of the genetic networks involved in hindbrain development (Bae et al. 2009; Brand et al. 1996). Recent developments in genetic tools, including the use of site specific recombinases, efficient transgenesis, inducible gene expression systems, and the targeted genome lesioning technologies TALEN and Cas9/CRISPR has opened up new avenues to manipulate and edit the genome of zebrafish (Hans et al. 2009; Scott 2009; Housden et al. 2016; Li et al. 2016)}. These tools enable the use of genome-wide genetic approaches, such as enhancer/exon traps and cell specific temporal control of gene expression in zebrafish. Several seminal papers have used these technologies to successfully elucidate mechanisms involved in the morphogenesis, neurogenesis and cell migration in the cerebellum (Bae et al. 2009; Chaplin et al. ; Hans et al. 2009; Volkmann et al. ; Volkmann et al. 2008). In addition, the use of genetically encoded sensors and probes that allows detection and manipulation of neuronal activity using optical methods have open up new means to study the physiology and function of the cerebellum (Simmich et al. 2012; Matsui et al. 2014). Taken together, these features have allowed zebrafish to emerge as a complete model for studies of molecular, cellular and physiological mechanisms involved in cerebellar development and function at both cell and circuit level.

Page generated in 0.0648 seconds