• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of a novel model of intestinal lipoprotein overproduction and the impact of N-3 PUFA supplementation

Hassanali, Zahra Unknown Date
No description available.
2

Characterization of a novel model of intestinal lipoprotein overproduction and the impact of N-3 PUFA supplementation

Hassanali, Zahra 11 1900 (has links)
Overproduction of intestinal chylomicrons (CM) has been proposed to contribute to fasting and post-prandial (PP) dyslipidemia and may accelerate the development of cardiovascular disease (CVD) during obesity, insulin resistance (IR) and diabetes. However, the impact of morphological changes in intestinal mucosa structure have not been investigated during IR and intestinal dyslipidemia. The first objective of this thesis was to characterize intestinal villi morphology and to determine whether a morphological relationship exists with enterocytic apoB48 (a marker of CM), and intestinal lymph secretion of apoB48 in the obese and IR JCR:LA-cp rat. The second objective was to assess the impact of n-3 PUFA supplementation on PP dyslipidemia in the JCR:LA-cp rat. Intestinal hypertrophy was observed in IR rats, corresponding to an increase in intestinal and lymphatic apoB48 expression. Further, a dietary intervention of n-3 PUFA showed lower PP plasma concentrations of apoB48 and PP plasma inflammatory markers. We conclude that intestinal hypertrophy may contribute to intestinal CM overproduction during obesity and IR. Additionally, dietary n-3 PUFA improves PP lipemia and the associated PP inflammatory response in the JCR:LA-cp rat model. / Nutrition and Metabolism

Page generated in 0.0634 seconds