• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Income Distribution Dynamics and Cross-Region Convergence in Europe. Spatial filtering and novel stochastic kernel representations

Fischer, Manfred M., Stumpner, Peter 04 1900 (has links) (PDF)
This paper suggests an empirical framework for analysing income distribution dynamics and cross-region convergence in the European Union of 27 member states, 1995- 2003. The framework lies in the research tradition that allows the state income space to be continuous, puts emphasis on both shape and intra-distribution dynamics and uses stochastic kernels for studying transition dynamics and implied long-run behaviour. In this paper stochastic kernels are described by conditional density functions, estimated by a product kernel estimator of conditional density and represented by means of novel visualisation tools. The technique of spatial filtering is used to account for spatial effects, in order to avoid misguided inferences and interpretations caused by the presence of spatial autocorrelation in the income distributions. The results reveal a slow catching-up of the poorest regions and a process of polarisation, with a small group of very rich regions shifting away from the rest of the cross-section. This is well evidenced by both, the unfiltered and the filtered ergodic density view. Differences exist in detail, and these emphasise the importance to properly deal with the spatial autocorrelation problem. (authors' abstract)

Page generated in 0.0939 seconds