• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Free Surface Progressive Waves Train Propagating over a Random Ripple Seabed

Chen, Ding-Yuan 06 August 2003 (has links)
For the 2-D system of wave motion, consider a free surface progressive gravity wave train propagating over a random ripple seabed and there will be an interaction between surface wave and seabed. By spectrum analysis, getting the components of ripple seabed to make a Fourier form and a perturbation expansion procedure will be developed to second order to solve the flow field. Because the different type of spectrum will make different ripple seabed, the affect made by components of ripple seabed will change with the type and it¡¦s bandwidth, and the resoults predicted in model of this paper can become systematic .It is helpful for design of engineer.
2

Spectral Characteristics Of Wind Waves In The Eastern Black Sea

Yilmaz, Nihal 01 July 2007 (has links) (PDF)
Wind waves are highly complex, random phenomena. One way to describe the irregular nature of the sea surface is the use of wave energy spectrum. Spectral information for wind waves in the Black Sea is extremely limited. Knowledge on spectral characteristics of wind waves would contribute to scientific, engineering and operational coastal and marine activities in the Black Sea. The aim of the present thesis is to investigate characteristics of wind wave spectra for the Eastern Black Sea. This would allow detailed understanding of the nature of the waves occurring in this enclosed basin. Long-term wave measurements obtained by directional buoys deployed offshore at Sinop, Hopa and Gelendzhik were utilized as the three sets of wave data. Records were analyzed to identify them as uni-modal or multi-modal spectra, and occurrences of spectral peaks were computed. Single peaked spectra were studied as belonging to fully arisen or developing sea states. Model parameters of JONSWAP and PM spectra were estimated for the observed spectra by using a least square error method. The records of developing seas were further analyzed to select the ones belonging to stable wind conditions. Fetch dependencies of non-dimensional spectral variables, mean parameters of JONSWAP model spectrum and the envelop of dimensionless spectra were investigated for this data sub-set.
3

Numerical investigation of wind input and spectral dissipation in evolution of wind waves.

Tsagareli, Kakha January 2009 (has links)
The present study comprised an intensive investigation of the two newly proposed parameterisation forms for the wind input source term S[subscript]in (Donelan et a1., 2006) and the wave dissipation source term S[subscript]ds (Young and Babanin, 2006) proposed on the basis of the recent experimental findings at Lake George, New South Wales, Australia in 1997-2000. The main objective of this study was to obtain advanced spectral forms for the wind input source function S[subscript]in and wave spectral dissipation source function S[subscript]ds, which satisfy important physical constraints. A new approach was developed to achieve the objectives of this study, within the strong physical framework. This approach resulted in a new balance scheme between the energy source terms in the wave model, mentioned before as the split balance scheme (Badulin, 2006). The wave-induced stress was defined as the main physical constraint for a new wave model including recently suggested source functions for the wind input and wave dissipation source terms. Within this approach, a new methodology was developed for correction of the wind input source function S[subscript]in. Another important physical constraint was the consistency between the wave dissipation and the wind energy input to the waves. The new parameter, the dissipation rate, R, was introduced in this study, as the ratio of the wave dissipation energy to the wind input energy. The parameterisation form of the dissipation rate is presented as a function of the inverse wave age U ₁₀ / c[subscript]p Some aspects of wave spectral modelling regarding the shape of the wave spectrum and spectral saturation were revised. The two-phase behaviour of the spectral dissipation function was investigated in terms of the functional dependency of the coefficients a for the inherent wave breaking term and b for the forced dissipation term. The present study found that the both coefficients have functional dependence on the inverse wave age U ₁₀ / c[subscript]p and the spectral frequency. Based on the experimental data by Young and Babanin (2006), a new directional spreading function of bimodal shape was developed for the wave dissipation source term. The performance of the new spectral functions of the wind input S[subscript]in(f) and the wave dissipation S[subscript]ds(f) source terms was assessed using a new third-generation two-dimensional research wave model WAVETIME-I. The model incorporating the corrected source functions was able to reproduce the existing experimental data. / Thesis (Ph.D.) -- University of Adelaide, School of Civil, Environmental and Mining Engineering, 2009
4

Numerical investigation of wind input and spectral dissipation in evolution of wind waves.

Tsagareli, Kakha January 2009 (has links)
The present study comprised an intensive investigation of the two newly proposed parameterisation forms for the wind input source term S[subscript]in (Donelan et a1., 2006) and the wave dissipation source term S[subscript]ds (Young and Babanin, 2006) proposed on the basis of the recent experimental findings at Lake George, New South Wales, Australia in 1997-2000. The main objective of this study was to obtain advanced spectral forms for the wind input source function S[subscript]in and wave spectral dissipation source function S[subscript]ds, which satisfy important physical constraints. A new approach was developed to achieve the objectives of this study, within the strong physical framework. This approach resulted in a new balance scheme between the energy source terms in the wave model, mentioned before as the split balance scheme (Badulin, 2006). The wave-induced stress was defined as the main physical constraint for a new wave model including recently suggested source functions for the wind input and wave dissipation source terms. Within this approach, a new methodology was developed for correction of the wind input source function S[subscript]in. Another important physical constraint was the consistency between the wave dissipation and the wind energy input to the waves. The new parameter, the dissipation rate, R, was introduced in this study, as the ratio of the wave dissipation energy to the wind input energy. The parameterisation form of the dissipation rate is presented as a function of the inverse wave age U ₁₀ / c[subscript]p Some aspects of wave spectral modelling regarding the shape of the wave spectrum and spectral saturation were revised. The two-phase behaviour of the spectral dissipation function was investigated in terms of the functional dependency of the coefficients a for the inherent wave breaking term and b for the forced dissipation term. The present study found that the both coefficients have functional dependence on the inverse wave age U ₁₀ / c[subscript]p and the spectral frequency. Based on the experimental data by Young and Babanin (2006), a new directional spreading function of bimodal shape was developed for the wave dissipation source term. The performance of the new spectral functions of the wind input S[subscript]in(f) and the wave dissipation S[subscript]ds(f) source terms was assessed using a new third-generation two-dimensional research wave model WAVETIME-I. The model incorporating the corrected source functions was able to reproduce the existing experimental data. / Thesis (Ph.D.) -- University of Adelaide, School of Civil, Environmental and Mining Engineering, 2009
5

Numerical investigation of wind input and spectral dissipation in evolution of wind waves.

Tsagareli, Kakha January 2009 (has links)
The present study comprised an intensive investigation of the two newly proposed parameterisation forms for the wind input source term S[subscript]in (Donelan et a1., 2006) and the wave dissipation source term S[subscript]ds (Young and Babanin, 2006) proposed on the basis of the recent experimental findings at Lake George, New South Wales, Australia in 1997-2000. The main objective of this study was to obtain advanced spectral forms for the wind input source function S[subscript]in and wave spectral dissipation source function S[subscript]ds, which satisfy important physical constraints. A new approach was developed to achieve the objectives of this study, within the strong physical framework. This approach resulted in a new balance scheme between the energy source terms in the wave model, mentioned before as the split balance scheme (Badulin, 2006). The wave-induced stress was defined as the main physical constraint for a new wave model including recently suggested source functions for the wind input and wave dissipation source terms. Within this approach, a new methodology was developed for correction of the wind input source function S[subscript]in. Another important physical constraint was the consistency between the wave dissipation and the wind energy input to the waves. The new parameter, the dissipation rate, R, was introduced in this study, as the ratio of the wave dissipation energy to the wind input energy. The parameterisation form of the dissipation rate is presented as a function of the inverse wave age U ₁₀ / c[subscript]p Some aspects of wave spectral modelling regarding the shape of the wave spectrum and spectral saturation were revised. The two-phase behaviour of the spectral dissipation function was investigated in terms of the functional dependency of the coefficients a for the inherent wave breaking term and b for the forced dissipation term. The present study found that the both coefficients have functional dependence on the inverse wave age U ₁₀ / c[subscript]p and the spectral frequency. Based on the experimental data by Young and Babanin (2006), a new directional spreading function of bimodal shape was developed for the wave dissipation source term. The performance of the new spectral functions of the wind input S[subscript]in(f) and the wave dissipation S[subscript]ds(f) source terms was assessed using a new third-generation two-dimensional research wave model WAVETIME-I. The model incorporating the corrected source functions was able to reproduce the existing experimental data. / Thesis (Ph.D.) -- University of Adelaide, School of Civil, Environmental and Mining Engineering, 2009

Page generated in 0.0189 seconds