1 |
Evaluation Of Multi Target Tracking Algorithms In The Presence Of ClutterGuner, Onur 01 August 2005 (has links) (PDF)
ABSTRACT
EVALUATION OF MULTI TARGET TRACKING ALGORITHMS
IN THE PRESENCE OF CLUTTER
Gü / ner, Onur
M.S., Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Mustafa Kuzuoglu
August 2005, 88 Pages
This thesis describes the theoretical bases, implementation and testing of a multi target tracking approach in radar applications. The main concern in this thesis is the evaluation of the performance of tracking algorithms in the presence of false alarms due to clutter. Multi target tracking algorithms are composed of three main parts: track initiation, data association and estimation. Two methods are proposed for track initiation in this work. First one is the track score function followed by a threshold comparison and the second one is the 2/2 & / M/N method which is based on the number of detections. For data association problem, several algorithms are developed according to the environment and number of tracks that are of interest. The simplest method for data association is the nearest-neighbor data association technique. In addition, the methods that use multiple hypotheses like probabilistic data association and joint probabilistic data association are introduced and investigated. Moreover, in the observation to track assignment, gating is an important issue since it reduces the complexity of the computations. Generally, ellipsoidal gates are used for this purpose. For estimation, Kalman filters are used for state prediction and measurement update. In filtering, target kinematics is an important point for the modeling. Therefore, Kalman filters based on different target kinematic models are run in parallel and the outputs of filters are combined to yield a single solution. This method is developed for maneuvering targets and is called interactive multiple modeling (IMM).
All these algorithms are integrated to form a multi target tracker that works in the presence (or absence) of clutter. Track score function, joint probabilistic data association (JPDAF) and interactive multiple model filtering are used for this purpose.
Keywords: clutter, false alarms, track initiation, data association, gating, target kinematics, IMM, JPDAF
|
2 |
Tracking Of Subsequently Fired ProjectilesPolat, Mehmet 01 July 2012 (has links) (PDF)
In conventional tracking algorithms the targets are usually considered as point source objects. However, in realistic scenarios the point source assumption is often not suitable and
estimating the states of an object extension characterized by a collectively moving ballistic object group (cluster) becomes a very critical and relevant problem which has applications in the defense area. Recently, a Bayesian approach to extended object tracking using random matrices has been proposed. Within this approach, ellipsoidal object extensions are
modeled by random matrices and treated as additional state variables to be estimated. In this work we propose to use a slightly modified version of this new approach that simultaneously estimates the ellipsoidal shape and the kinematics of a group of ballistic targets. Target group that is tracked consists of subsequent projectiles. We use JPDAF framework together with the new approach to emphasize the pros and cons of both approaches. The methods are demonstrated and evaluated in detail by making various simulations.
|
3 |
Reconnaissance comportementale et suivi multi-cible dans des environnements partiellement observés / ehavioral Recognition and multi-target tracking in partially observed environmentsFansi Tchango, Arsène 04 December 2015 (has links)
Dans cette thèse, nous nous intéressons au problème du suivi comportemental des piétons au sein d'un environnement critique partiellement observé. Tandis que plusieurs travaux de la littérature s'intéressent uniquement soit à la position d'un piéton dans l'environnement, soit à l'activité à laquelle il s'adonne, nous optons pour une vue générale et nous estimons simultanément à ces deux données. Les contributions présentées dans ce document sont organisées en deux parties. La première partie traite principalement du problème de la représentation et de l'exploitation du contexte environnemental dans le but d'améliorer les estimations résultant du processus de suivi. L'état de l'art fait mention de quelques études adressant cette problématique. Dans ces études, des modèles graphiques aux capacités d'expressivité limitées, tels que des réseaux Bayésiens dynamiques, sont utilisés pour modéliser des connaissances contextuelles a priori. Dans cette thèse, nous proposons d'utiliser des modèles contextuelles plus riches issus des simulateurs de comportements d'agents autonomes et démontrons l’efficacité de notre approche au travers d'un ensemble d'évaluations expérimentales. La deuxième partie de la thèse adresse le problème général d'influences mutuelles - communément appelées interactions - entre piétons et l'impact de ces interactions sur les comportements respectifs de ces derniers durant le processus de suivi. Sous l'hypothèse que nous disposons d'un simulateur (ou une fonction) modélisant ces interactions, nous développons une approche de suivi comportemental à faible coût computationnel et facilement extensible dans laquelle les interactions entre cibles sont prises en compte. L'originalité de l'approche proposée vient de l'introduction des "représentants'', qui sont des informations agrégées issues de la distribution de chaque cible de telle sorte à maintenir une diversité comportementale, et sur lesquels le système de filtrage s'appuie pour estimer, de manière fine, les comportements des différentes cibles et ceci, même en cas d'occlusions. Nous présentons nos choix de modélisation, les algorithmes résultants, et un ensemble de scénarios difficiles sur lesquels l’approche proposée est évaluée / In this thesis, we are interested in the problem of pedestrian behavioral tracking within a critical environment partially under sensory coverage. While most of the works found in the literature usually focus only on either the location of a pedestrian or the activity a pedestrian is undertaking, we stands in a general view and consider estimating both data simultaneously. The contributions presented in this document are organized in two parts. The first part focuses on the representation and the exploitation of the environmental context for serving the purpose of behavioral estimation. The state of the art shows few studies addressing this issue where graphical models with limited expressiveness capacity such as dynamic Bayesian networks are used for modeling prior environmental knowledge. We propose, instead, to rely on richer contextual models issued from autonomous agent-based behavioral simulators and we demonstrate the effectiveness of our approach through extensive experimental evaluations. The second part of the thesis addresses the general problem of pedestrians’ mutual influences, commonly known as targets’ interactions, on their respective behaviors during the tracking process. Under the assumption of the availability of a generic simulator (or a function) modeling the tracked targets' behaviors, we develop a yet scalable approach in which interactions are considered at low computational cost. The originality of the proposed approach resides on the introduction of density-based aggregated information, called "representatives’’, computed in such a way to guarantee the behavioral diversity for each target, and on which the filtering system relies for computing, in a finer way, behavioral estimations even in case of occlusions. We present the modeling choices, the resulting algorithms as well as a set of challenging scenarios on which the proposed approach is evaluated
|
Page generated in 0.0234 seconds