• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Annual Report 2015 - Institute of Ion Beam Physics and Materials Research

28 July 2016 (has links) (PDF)
After the successful evaluation in 2015 we started research and further development of our largescale facilities, in particular the Ion Beam Center (IBC), in the framework of Helmholtz’s Programmeoriented Funding scheme (POF) which coordinates scientific cooperation on a national and international scale. Most of our activities are assigned to the Helmholtz program “From Matter to Materials and Life” within the research area “Matter”, in cooperation with several other German Helmholtz Centers. Our in-house research is performed in three so-called research themes, as depicted in the schematic below. What is missing there for simplicity is a minor part of our activities in the program “Nuclear Waste Management and Safety” within the research area “Energy”. A few highlights which have been published in 2015 are reprinted in this annual report in order to show the variety of the research being performed at the Institute, ranging from self-organized pattern formation during ion erosion or DNA origami patterning, over ferromagnetism in SiC and TiO2 to plasmonics and THz-spectroscopy of III-V semiconductors. A technological highlight published recently is the demonstration of nanometer scale elemental analysis in a Helium ion microscope, making use of a time-of-flight detector that has been developed at the IBC. In addition to these inhouse research highlights, also users of the IBC, in particular of the accelerator mass spectrometry (AMS), succeeded in publishing their research on geomorphology in Nepal in the high-impact journal Science (W. Schwanghart et al., Science 351, 147 (2015)), which demonstrates impressively the added value of transdisciplinary research at the IBC. In order to further develop the IBC, we have started in 2015 the design and construction of our new low energy ion nanoengineering platform which was highly recommended by the POF evaluators. It will consist of two-dimensional materials synthesis and modification, high-resolution ion beam analysis and high-resolution electron beam analysis and will come into full operation in 2019.
2

Annual Report 2015 - Institute of Ion Beam Physics and Materials Research

Fassbender, Jörg, Heera, Viton, Helm, Manfred, Zahn, Peter 28 July 2016 (has links)
After the successful evaluation in 2015 we started research and further development of our largescale facilities, in particular the Ion Beam Center (IBC), in the framework of Helmholtz’s Programmeoriented Funding scheme (POF) which coordinates scientific cooperation on a national and international scale. Most of our activities are assigned to the Helmholtz program “From Matter to Materials and Life” within the research area “Matter”, in cooperation with several other German Helmholtz Centers. Our in-house research is performed in three so-called research themes, as depicted in the schematic below. What is missing there for simplicity is a minor part of our activities in the program “Nuclear Waste Management and Safety” within the research area “Energy”. A few highlights which have been published in 2015 are reprinted in this annual report in order to show the variety of the research being performed at the Institute, ranging from self-organized pattern formation during ion erosion or DNA origami patterning, over ferromagnetism in SiC and TiO2 to plasmonics and THz-spectroscopy of III-V semiconductors. A technological highlight published recently is the demonstration of nanometer scale elemental analysis in a Helium ion microscope, making use of a time-of-flight detector that has been developed at the IBC. In addition to these inhouse research highlights, also users of the IBC, in particular of the accelerator mass spectrometry (AMS), succeeded in publishing their research on geomorphology in Nepal in the high-impact journal Science (W. Schwanghart et al., Science 351, 147 (2015)), which demonstrates impressively the added value of transdisciplinary research at the IBC. In order to further develop the IBC, we have started in 2015 the design and construction of our new low energy ion nanoengineering platform which was highly recommended by the POF evaluators. It will consist of two-dimensional materials synthesis and modification, high-resolution ion beam analysis and high-resolution electron beam analysis and will come into full operation in 2019.

Page generated in 0.063 seconds