• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Evaluation of a 3D Printed Mirror Actuator : A Comparison with the James Webb Space Telescope

Leopoldsson, Louise, Lindsjö, Ellen January 2023 (has links)
This study aims to investigate the similarities in precision and performance between a James WebbSpace Telescope mirror actuator, the part controlling the motion of the primary mirror segments,and two 3D printed replicas. The two replicas were made from the plastics PLA and PETGand based on the designs of Zachary Tong. The plastics were examined concurrently and theresults were compared with simulations in COMSOL. The 3D printed parts were assembled and theresulting replicas were put in motion by an Arduino driven stepper motor. The result showed thatthe replica made from PLA had an average precision of 40 nm and the replica made from PETGhad an average precision of 32 nm. Compared to the James Webb Space Telescope actuator, bothreplicas were approximately one order of magnitude less accurate. The COMSOL simulations gavesimilar results. In conclusion, the study shows that the choice of material matters. The performanceof the James Webb Space Telescope actuator was more accurately emulated by the replica madefrom PETG than by the one made from PLA.
2

Characterisation of the MIRI spectrometer, an instrument for the James Webb Space Telescope

Briggs, Michael January 2010 (has links)
The MIRI-MRS is a future space based Medium Resolution Spectrometer and one of four instruments to be integrated onto The James Webb Space Telescope. The Medium Resolution Spectrometer is designed to be diffraction limited across its entire passband of 5 - 28.3 microns. It achieves this through the spectral filtering of the passband into four channels with each one containing an integral field unit optimised for minimal diffraction losses. The integral field unit enables the simultaneous measurement of the spectral data across the entire field of view. The design of the Medium Resolution Spectrometer is outlined with particular reference to the choice of slice widths used for each channel to minimise the diffraction losses from the slicing mechanism. The slice widths are also used to derive the extent of the field of view and combined with the along slice plate scale at the detector the technique required for complete spatial sampling of the spectrometer is outlined. The operation of the Channel 1 image slicer component was tested cryogenically at 5 microns for diffraction losses due to the slicing of the point spread function. This was so that the actual diffraction losses could be measured and compared with the optical model. From the resulting analysis I concluded that the operation of the image slicers were well understood for diffraction losses. Performance tests were required on the instrument because of its novel design. This was the first implementation of an integral field unit operating between 5 - 28.3 microns and it was necessary to ensure that the operation of the image slicer did not induce unacceptable diffraction losses into the instrument. Tests were required on the assembled instrument to verify the optical design. A Verification Model of MIRI was built to enable test verification of the optical design. This testing was carried out in advance of the MIRI Flight Model assembly so that changes could be made to the Flight Model design if necessary. This testing phase was also designed to define the calibration process necessary to prepare the MIRI Flight Model for scientific operations. For the testing phase it was necessary to create an astronomical source simulator. This MIRI Telescope Simulator was constructed in Madrid where I spent two months ensuring the point source movement across the field of view would be sufficient to investigate the Medium Resolution Spectrometer. My contribution was to help assemble both the Verification and Flight Models. I also participated in the Verification Model testing phase from the test design phase to the test implementation and data analysis. My role in the analysis was to investigate the field of view of the Medium Resolution Spectrometer Verification Model and whether the field of view requirements for the spectrometer were met. During this analysis I also verified that the diffraction effects of the end-to-end instrument were well understood by the optical model. The Medium Resolution Spectrometer Verification Model field of view compromised the field of view requirement for the spectrometer. A similar analysis for the Flight Model showed that there would be a low probability that the field of view requirement would be met. As a result of the analysis I defined a new slit mask design that would align the field of view sampled by Channel 1 to increase the aligned field of view. As a result there is a high probability that the field of view requirement for the Flight Model will be exceeded. The test analysis discovered a magnification effect within the spectrometer which must be properly characterised to enable accurate field of view reconstruction. I designed a test necessary for the calibration phase of the Flight Model to enable full spatial alignment of the Medium Resolution Spectrometer. I also measured an excess flux level in the Channel 1 observations at the detector and there was a ghost detected in the Channel 1 images. Whilst the origin of either the excess flux or the ghost could not be completely determined I investigated the possibility that they will not be present in the Flight Model due to the slight design differences. If present however they will not increase the background level of an observation above the requirement outlined for Channel 1.
3

Hunting for Dark Stars with the James Webb Space Telescope

Nittler, Josefine January 2018 (has links)
The first stars in the Universe are thought to have formed in high dark matter density minihalos about 200 million years after the Big Bang. If these stars were able to contract dark matter into their stellar core while forming, some of them might have turned into dark stars (DSs) powered by the heat from dark matter annihilation. The possibilities for detection of DSs with the upcoming James Webb Space Telescope (JWST), scheduled for launch in 2021, is investigated in this work. With DS models generated in Spolyar et al. (2009) and atmosphere spectra from Gustafsson et al. (2008), spectral analysis has been carried out in MATLAB to find the unique colors of DSs compared to galaxies generated in Zackrisson et al. (2017) at z ≈ 7 − 11. It was found that lower temperature DSs (Teff ≤ 7800K) are distinguishable from galaxies and that they would be bright enough to be detected with the JWST provided a magnification factor of µ ≈ 160−1000 with the use of gravitational lensing. More recent DS models reveal that the DS of temperature Teff = 7800K is detectable even without the use of gravitational lensing. However, the probability of finding one today is really small due to DSs’ presumably short lifetime. The results of this work are hoped to give a better understanding of the properties of DSs and to increase the probability of finding one in the large imaging survey carried out by the JWST. / De första stjärnorna i universum antas ha bildats i minihalos med hög densitet av mörk materia omkring 200 miljoner år efter Big Bang. Om dessa stjärnor kunde dra till sig mörk materia under sitt bildande kan vissa av dem ha utvecklats till mörka stjärnor (s.k. dark stars) med mörk materia som energikälla. I detta arbete undersöks möjligheterna att upptäcka dem med det kommande James Webb Space Teleskopet (JWST) som planeras för uppskjutning år 2021. Med dark starmodeller genererade i Spolyar et al. (2009) och atmosfärspektra från Gustafsson et al. (2008) har spektralanalys utförts i MATLAB för att hitta vilka dark stars som går att urskilja från galaxer genererade i Zackrisson et al. (2017) vid z ≈ 7−11. Det visade sig att dark stars med låg temperatur (Teff ≤ 7800K) är urskiljbara och att de flesta av dessa dark stars, vid en förstoringsfaktor av µ ≈ 160−1000 vid användning av gravitationell linsning, är tillräckligt ljusstarka för att kunna detekteras. Jämfört med senare dark star-modeller skulle även Teff = 7800K DSs kunna detekteras utan användning av gravitaionell linsning. Sannolikheten att hitta en dark star är fortfarande väldigt liten på grund av dess förmodade korta livstid. Resultaten av detta arbete hoppas kunna ge en bättre förståelse för egenskaperna hos mörka stjärnor samt öka sannolikheten för detektion med JWST.

Page generated in 0.0678 seconds