• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving the Precision of a Scalable Demand-Driven Null- Dereference Verification for Java

Margoor, Amogh January 2013 (has links) (PDF)
The problem addressed in this thesis is sound, scalable, demand-driven null-dereference verification for Java programs via over-approximated weakest preconditions analysis. The base version of this analysis having been described in a previous publication, in this thesis we focus primarily on describing two major optimizations that we have incorporated that allow for longer program paths to be traversed more efficiently, hence increasing the precision of the approach. The first optimization is to bypass certain expensive-to-analyze constructs, such as virtual calls with too many possible targets, by directly transferring dataflow facts from points after the construct to points before along def-use edges of a certain kind. The second optimization is to use manually constructed summaries of Java container class methods, rather than analyze the code of these methods directly. We evaluate our approach using 10 real world Java programs, as well as several micro benchmarks. We demonstrate that our optimizations result in a 45% reduction in false positives over the base version on the real programs, without significant impact on running time.
2

Ambiente de testes utilizando verificação de componentes java com tratamento de exceções / Test environment using property checking of Java components with exception handling

Xavier, Kleber da Silva 17 April 2008 (has links)
Um sistema de software que apresente problemas em sua execução pode gerar conseqüências desde um simples incômodo ao usuário, até desastres como a perda de uma sonda da NASA em Marte. As atividades de teste visam identificar erros nos sistemas de software, prevenindo estas conseqüências indesejáveis. Porém, os testes podem envolver entre 30% e 40% do esforço de desenvolvimento do sistema, e em sistemas críticos, seu custo pode ser de 3 a 5 vezes maior do que o custo combinado das demais atividades. Para tentar reduzir estes custos podemos automatizar parte das atividades. No presente caso, pretende-se minimizar os casos de teste gerados manualmente, utilizando uma técnica denominada verificação de modelos. Esta técnica consiste em verificar propriedades definidas formalmente através de expressões matemáticas, utilizando uma ferramenta de verificação que simula a execução do código. Além disso, um sistema que utilize um tratamento de condições excepcionais eficiente, tem sua manutenibilidade, robustez e confiabilidade melhoradas. Por isso, definimos propriedades relacionadas ao tratamento de exceções, como ponto de entrada para a verificação de modelos. Apresentamos um ambiente de testes criado para permitir a verificação destas propriedades com o verificador Java PathFinder e a exibição das estatísticas de cobertura de testes de acordo com o critério selecionado. Este ambiente facilita a execução dos testes, pois apresenta uma interface gráfica com o usuário que permite a configuração e execução dos testes sem que seja necessária a escrita de código pelo testador. Apresentamos também o resultado do uso deste ambiente para o teste de vários programas exemplo, utilizando desde código concorrente até diferentes estratégias de tratamento de exceção e discutimos as características, cuidados no uso e limitações das ferramentas utilizadas. / A software system that shows some failure at runtime execution may bring consequences that range from a simple user annoyance to great disasters such as the lost NASA probe on Mars. The test activities aim to find errors in software systems, preventing these undesirable consequences. However, tests may take between 30% and 40% of total development time, and on critical systems, its cost can be from 3 to 5 times greater than the combined cost of the other activities. In an effort to reduce these costs, we may automate some of the activities. In this work we intend to minimize test case manual generation, using a technique called model checking. This technique involves the checking of properties defined through the use of mathematical formulas, using a tool, that simulates code execution. In addition, a system with an efficient exception handling mechanism, has its maintainability, robustness and reliability enhanced. So, in this work we define exception handling related properties, as an input for model checking. We present a test tool created to allow checking of these properties using the Java PathFinder model checker, and to list the test coverage statistics, according to the selected test criteria. This tool makes easy the test execution, since it presents a graphical user interface that allows configuration and running of tests with no need to write any lines of code. We also show the results of running several tests with the GUI, using some programs implemented with concurrent code and several exception handling techniques and discuss the main features, pitfalls and limitations of the underlying tools.
3

Assertion-based repair of complex data structures

Elkarablieh, Bassem H. 09 August 2012 (has links)
As software systems are growing in complexity and size, reliability becomes a major concern. A large degree of industrial and academic efforts for increasing software reliability are directed towards design, testing and validation—activities performed before the software is deployed. While such activities are fundamental for achieving high levels of confidence in software systems, bugs still occur after deployment resulting in costly software failures. This dissertation presents assertion-based repair, a novel approach for error recovery from insidious bugs that occur after the system is deployed. It describes the design and implementation of a repair framework for Java programs and evaluates the efficiency and effectiveness of the approach on repairing data structure errors in both software libraries and open-source stand-alone applications. Our approach introduces a new form of assertions, assertAndRepair, for developers to use when checking the consistency of the data structures manipulated by their programs with respect to a set of desired structural and data properties. The developer provides the properties in a Java boolean method, repOk, which returns a truth value based on whether a given data structure satisfies these properties. Upon an assertion violation due to a faulty structure, instead of terminating the execution, the structure is repaired, i.e., its fields are mutated such that the resulting structure satisfies the desired properties, and the program proceeds with its execution. To aid developers in detecting the causes of the fault, repair-logs are generated which provide useful information about the performed mutations. The repair process is performed using a novel algorithm that uses a systematic search based on symbolic execution to determine valuations for the structures’ fields that result in a valid structure. Our experiments on repairing both library data structures, as well as, stand-alone applications demonstrate the utility and efficiency of the approach in repairing large structures, enabling programs to recover from crippling errors and proceed with their executions. Assertion-based repair presents a novel post-deployment mechanism that integrates with existing and newly developed software, providing them with the defensive ability to recover from unexpected runtime errors. Programmers already understand the advantages of using assertions and are comfortable with writing them. Providing new analyses and powerful extensions for them presents an attractive direction towards building more reliable software. / text
4

Ambiente de testes utilizando verificação de componentes java com tratamento de exceções / Test environment using property checking of Java components with exception handling

Kleber da Silva Xavier 17 April 2008 (has links)
Um sistema de software que apresente problemas em sua execução pode gerar conseqüências desde um simples incômodo ao usuário, até desastres como a perda de uma sonda da NASA em Marte. As atividades de teste visam identificar erros nos sistemas de software, prevenindo estas conseqüências indesejáveis. Porém, os testes podem envolver entre 30% e 40% do esforço de desenvolvimento do sistema, e em sistemas críticos, seu custo pode ser de 3 a 5 vezes maior do que o custo combinado das demais atividades. Para tentar reduzir estes custos podemos automatizar parte das atividades. No presente caso, pretende-se minimizar os casos de teste gerados manualmente, utilizando uma técnica denominada verificação de modelos. Esta técnica consiste em verificar propriedades definidas formalmente através de expressões matemáticas, utilizando uma ferramenta de verificação que simula a execução do código. Além disso, um sistema que utilize um tratamento de condições excepcionais eficiente, tem sua manutenibilidade, robustez e confiabilidade melhoradas. Por isso, definimos propriedades relacionadas ao tratamento de exceções, como ponto de entrada para a verificação de modelos. Apresentamos um ambiente de testes criado para permitir a verificação destas propriedades com o verificador Java PathFinder e a exibição das estatísticas de cobertura de testes de acordo com o critério selecionado. Este ambiente facilita a execução dos testes, pois apresenta uma interface gráfica com o usuário que permite a configuração e execução dos testes sem que seja necessária a escrita de código pelo testador. Apresentamos também o resultado do uso deste ambiente para o teste de vários programas exemplo, utilizando desde código concorrente até diferentes estratégias de tratamento de exceção e discutimos as características, cuidados no uso e limitações das ferramentas utilizadas. / A software system that shows some failure at runtime execution may bring consequences that range from a simple user annoyance to great disasters such as the lost NASA probe on Mars. The test activities aim to find errors in software systems, preventing these undesirable consequences. However, tests may take between 30% and 40% of total development time, and on critical systems, its cost can be from 3 to 5 times greater than the combined cost of the other activities. In an effort to reduce these costs, we may automate some of the activities. In this work we intend to minimize test case manual generation, using a technique called model checking. This technique involves the checking of properties defined through the use of mathematical formulas, using a tool, that simulates code execution. In addition, a system with an efficient exception handling mechanism, has its maintainability, robustness and reliability enhanced. So, in this work we define exception handling related properties, as an input for model checking. We present a test tool created to allow checking of these properties using the Java PathFinder model checker, and to list the test coverage statistics, according to the selected test criteria. This tool makes easy the test execution, since it presents a graphical user interface that allows configuration and running of tests with no need to write any lines of code. We also show the results of running several tests with the GUI, using some programs implemented with concurrent code and several exception handling techniques and discuss the main features, pitfalls and limitations of the underlying tools.
5

Abstract Certification of Java Programs in Rewriting Logic

Alba Castro, Mauricio Fernando 28 November 2011 (has links)
In this thesis we propose an abstraction based certification technique for Java programs which is based on rewriting logic, a very general logical and semantic framework efficiently implemented in the functional programming language Maude. We focus on safety properties, i.e. properties of a system that are defined in terms of certain events not happening, which we characterize as unreachability problems in rewriting logic. The safety policy is expressed in the style of JML, a standard property specification language for Java modules. In order to provide a decision procedure, we enforce finite-state models of programs by using abstract interpretation. Starting from a specification of the Java semantics written in Maude, we develop an abstraction based, finite-state operational semantics also written in Maude which is appropriate for program verification. As a by-product of the verification based on abstraction, a dependable safety certificate is delivered which consists of a set of rewriting proofs that can be easily checked by the code consumer by using a standard rewriting logic engine. The abstraction based proof-carrying code technique, called JavaPCC, has been implemented and successfully tested on several examples, which demonstrate the feasibility of our approach. We analyse local properties of Java methods: i.e. properties of methods regarding their parameters and results. We also study global confidentiality properties of complete Java classes, by initially considering non--interference and, then, erasure with and without non--interference. Non--interference is a semantic program property that assigns confidentiality levels to data objects and prevents illicit information flows from occurring from high to low security levels. In this thesis, we present a novel security model for global non--interference which approximates non--interference as a safety property. / Alba Castro, MF. (2011). Abstract Certification of Java Programs in Rewriting Logic [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/13617 / Palancia
6

Efficient Instrumentation for Object Flow Profiling

Mudduluru, Rashmi January 2015 (has links) (PDF)
Profiling techniques to detect performance bugs in applications are usually customized to detect a specific bug pattern and involve significant engineering effort. In spite of this effort, many techniques either suffer from high runtime overheads or are imprecise. This necessitates the design of a common and efficient instrumentation substrate that profiles the flow of objects during an execution. Designing such a substrate which enables profile generation precisely with low overhead is non-trivial due to the number of objects created, accessed and paths traversed by them in an execution. In this thesis, we design and implement an efficient instrumentation substrate that efficiently generates object flow profiles for Java programs, without requiring any modifications to the underlying virtual machine. We achieve this by applying Ball-Larus numbering on a specialized hy-brid ow graph (hfg). The hfg path profiles that are collected during runtime are post-processed o ine to derive the object flow profiles. We extend the design to handle inter-procedural objec flows by constructing flow summaries for each method and incorporating them appropriately. We have implemented the substrate and validated its efficacy by applying it on programs from popular benchmark suites including dacapo and java-grande. The results demonstrate the scalability of our approach, which handles 0.2M to 0.55B object accesses with an average runtime overhead of 8x. We also demonstrate the effectiveness of the generated profiles by implementing three client analyses that consume the profiles to detect performance bugs. The analyses are able to detect 38 performance bugs which when refactored result in signi cant performance gains (up to 30%) in running times.
7

A Static Slicing Tool for Sequential Java Programs

Devaraj, Arvind January 2007 (has links) (PDF)
A program slice consists of a subset of the statements of a program that can potentially affect values computed at some point of interest. Such a point of interest along with a set of variables is called a slicing criterion. Slicing tools are useful for several applications, such as program understanding, testing, program integration, and so forth. Slicing object oriented programs has some special problems that need to be addressed due to features like inheritance, polymorphism and dynamic binding. Alias analysis is important for precision of slices. In this thesis we implement a slicing tool for sequential Java programs in the Soot framework. Soot is a front-end for Java developed at McGill University and it provides several forms of intermediate code. We have integrated the slicer into the framework. We also propose an improved technique for intraprocedural points-to analysis. We have implemented this technique and compare the results of the analysis with those for a flow-insensitive scheme in Soot. Performance results of the slicer are reported for several benchmarks.
8

Access Path Based Dataflow Analysis For Sequential And Concurrent Programs

Arnab De, * 12 1900 (has links) (PDF)
In this thesis, we have developed a flow-sensitive data flow analysis framework for value set analyses for Java-like languages. Our analysis frame work is based on access paths—a variable followed by zero or more field accesses. We express our abstract states as maps from bounded access paths to abstract value sets. Using access paths instead of allocation sites enables us to perform strong updates on assignments to dynamically allocated memory locations. We also describe several optimizations to reduce the number of access paths that need to be tracked in our analysis. We have instantiated this frame work for flow-sensitive pointer and null-pointer analysis for Java. We have implemented our analysis inside the Chord frame work. A major part of our implementation is written declaratively using Datalog. We leverage the use of BDDs in Chord for keeping our memory usage low. We show that our analysis is much more precise and faster than traditional flow-sensitive and flow-insensitive pointer and null-pointer analysis for Java. We further extend our access path based analysis frame work to concurrent Java programs. We use the synchronization structure of the programs to transfer abstract states from one thread to another. Therefore, we do not need to make conservative assumptions about reads or writes to shared memory. We prove our analysis to be sound for the happens-before memory model, which is weaker than most common memory models, including sequential consistency and the Java Memory Model. We implement a null-pointer analysis for concurrent Java programs and show it to be more precise than the traditional analysis.

Page generated in 0.0676 seconds