• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing Tsunami Risk in Southwest Java, Indonesia: Paleo-Tsunami Deposits and Inundation Modeling

Deng, Han 01 February 2018 (has links)
Samples from 13 different sites along the south coast of West Java yield 7 candidate paleo-tsunami sands, which may represent 4 different paleo-tsunami events. Ages obtained from one deposit may document a tsunami and coastal subsidence from an earthquake in 1,053 AD. The tsunami deposit from this event is preserved in an uplifted marine terrace exposed at Panto Cape, Banten Province. We speculated that the terrace has been uplifted about 4.6 m to the present height of 2 m above sea level, since the 1053 AD event at a rate of 4.8 mm/a. This uplift is strong evidence that strain is accumulating at the Java Trench and enough has already accumulated to generate a megathrust earthquake event.Numerical models using ComMIT of possible megathrust earthquake scenarios were constructed using the 2004 Sumatra earthquake, 30-m fault slip, and the 2011 Japan earthquake as proxies. These three scenarios yield earthquakes of Mw 9.3, 9.5 and 8.9, respectively. The worst case scenario is used to estimate the extent of tsunami inundation of the SW coast of Java, which totals 643 km2. The total number of people who inhabit the inundation area is around 451,000. Some coastal configurations cause a no escape situation where the modeled tsunami arrives in less than 20 minutes, which is not enough time for those near the coast to escape far enough inland or to a sufficient elevation to avoid the tsunami. These areas include the coastlines of Sukabumi, Cianjur and west Garut Regencies and the Pameungpeuk area.
2

Assessing Tsunami Risk in Southwest Java, Indonesia: Paleo-Tsunami Deposits and Inundation Modeling

Deng, Han 01 February 2018 (has links)
Samples from 13 different sites along the south coast of West Java yield 7 candidate paleo-tsunami sands, which may represent 4 different paleo-tsunami events. Ages obtained from one deposit may document a tsunami and coastal subsidence from an earthquake in 1,053 AD. The tsunami deposit from this event is preserved in an uplifted marine terrace exposed at Panto Cape, Banten Province. We speculated that the terrace has been uplifted about 4.6 m to the present height of 2 m above sea level, since the 1053 AD event at a rate of 4.8 mm/a. This uplift is strong evidence that strain is accumulating at the Java Trench and enough has already accumulated to generate a megathrust earthquake event.Numerical models using ComMIT of possible megathrust earthquake scenarios were constructed using the 2004 Sumatra earthquake, 30-m fault slip, and the 2011 Japan earthquake as proxies. These three scenarios yield earthquakes of Mw 9.3, 9.5 and 8.9, respectively. The worst case scenario is used to estimate the extent of tsunami inundation of the SW coast of Java, which totals 643 km2. The total number of people who inhabit the inundation area is around 451,000. Some coastal configurations cause a no escape situation where the modeled tsunami arrives in less than 20 minutes, which is not enough time for those near the coast to escape far enough inland or to a sufficient elevation to avoid the tsunami. These areas include the coastlines of Sukabumi, Cianjur and west Garut Regencies and the Pameungpeuk area.
3

Evaluating the East Java Tsunami Hazard: What Can Newly-Discovered Imbricate Coastal Boulder Accumulations Near Pacitan and at Pantai Papuma, Indonesia Tell Us?

Meservy, William Nile 01 October 2017 (has links)
Our paleotsunami surveys of the southern Java coast led to the discovery of five imbricate coastal boulder fields near Pacitan, Indonesia that may date to the mid-to-late 19th century or prior and two similar fields at Pantai Papuma and Pantai Pasir Putih that were tsunami-emplaced during the 1994 7.9 Mw event in East Java. Estimated ages for the fields near Pacitan are based on historical records and radiocarbon analyses of coral boulders. The largest imbricated boulders in fields near Pacitan and in East Java are similar in size (approximately 3 m^3) and are primarily composed of platy beachrock dislodged from the intertidal platform during one or several unusually powerful wave impactions. Hydrodynamic wave height reconstructions of the accumulations near Pacitan indicate the boulders were likely tsunami rather than storm-wave emplaced, as the size of the storm waves needed to do so is not viable. We evaluate the boulders as an inverse problem, using their reconstructed wave heights and ComMIT tsunami modeling to suggest a minimum 8.4 Mw earthquake necessary to dislodge and emplace the largest boulders near Pacitan assuming they were all deposited during the same tsunami event and that the rupture source was located along the Java Trench south of Pacitan. A combined analysis of historical records of Java earthquakes and plate motion measurements indicates a seismic gap with >25 m of slip deficit along the Java Trench. A 1000-1500 km rupture along the subduction interface of this segment is capable of producing a 9.0-9.3 Mw megathrust earthquake and a giant tsunami. However, evidence for past megathrust earthquake events along the this trench remains elusive. We use epicenter independent tsunami modelling to estimate wave heights and inundation along East Java in the event that the trench were to fully rupture. By translocating ComMIT slip parameters of Japan's 2011 9.1 Mw event along the trench offshore East Java, we demonstrate possible wave heights in excess of 20 m at various locations along its southern coasts. Approximately 300,000-500,000 people in low-lying coastal communities on the southern coasts of East Java could be directly affected. We recommend at-risk communities practice the "20/20/20 principle" of tsunami hazard awareness and evacuation.

Page generated in 0.0748 seconds