• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 29
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design and Implementation of Java Virtual Machine

Mandal, Abhijit 06 1900 (has links)
Interpretation of Java bytecode results in slow execution of program.First version of Java Virtual Machine(JVM) implementation was relied on interpretation techniques. On the other hand performance can be improved by translating the Java bytecode into machine code by a Just-In-Time(JIT) compiler and this technique is being integrated into most JVM implementations. Java is an automatic garbage collected language, freeing the programmer from the explicit memory management. Garbage collection "pause" time can be reduced by using a generational garbage collection. This thesis describes an implementation of a JVM. The specific contributions made in this thesis include: development of a Just-In-Time(JIT) compiler using DAG construction technique, a bytecode interpreter, a generational garbage collector. Our implementation can execute Java bytecode either by an interpreter or the bytecode can be translated into machine code using the JIT compiler and the translated code is directly executed by the processor. We have implemented the Java Native Interface (JNI) to enable using C and assembly language programs with Java.
12

Formal specification and verification of a JVM and its bytecode verifier

Liu, Hanbing 28 August 2008 (has links)
Not available / text
13

Protecting sensitive information from untrusted code

Roy, Indrajit 13 December 2010 (has links)
As computer systems support more aspects of modern life, from finance to health care, security is becoming increasingly important. However, building secure systems remains a challenge. Software continues to have security vulnerabilities due to reasons ranging from programmer errors to inadequate programming tools. Because of these vulnerabilities we need mechanisms that protect sensitive data even when the software is untrusted. This dissertation shows that secure and practical frameworks can be built for protecting users' data from untrusted applications in both desktop and cloud computing environment. Laminar is a new framework that secures desktop applications by enforcing policies written as information flow rules. Information flow control, a form of mandatory access control, enables programmers to write powerful, end-to-end security guarantees while reducing the amount of trusted code. Current programming abstractions and implementations of this model either compromise end-to-end security guarantees or require substantial modifications to applications, thus deterring adoption. Laminar addresses these shortcomings by exporting a single set of abstractions to control information flows through operating system resources and heap-allocated objects. Programmers express security policies by labeling data and represent access restrictions on code using a new abstraction called a security region. The Laminar programming model eases incremental deployment, limits dynamic security checks, and supports multithreaded programs that can access heterogeneously labeled data. In large scale, distributed computations safeguarding information requires solutions beyond mandatory access control. An important challenge is to ensure that the computation, including its output, does not leak sensitive information about the inputs. For untrusted code, access control cannot guarantee that the output does not leak information. This dissertation proposes Airavat, a MapReduce-based system which augments mandatory access control with differential privacy to guarantee security and privacy for distributed computations. Data providers control the security policy for their sensitive data, including a mathematical bound on potential privacy violations. Users without security expertise can perform computations on the data; Airavat prevents information leakage beyond the data provider's policy. Our prototype implementation of Airavat demonstrates that several data mining tasks can be performed in a privacy preserving fashion with modest performance overheads. / text
14

Analyzing Large-Scale Object-Oriented Software to Find and Remove Runtime Bloat

Xu, Guoqing 27 September 2011 (has links)
No description available.
15

Applying Dynamic Software Updates to Computationally-Intensive Applications

Kim, Dong Kwan 22 July 2009 (has links)
Dynamic software updates change the code of a computer program while it runs, thus saving the programmer's time and using computing resources more productively. This dissertation establishes the value of and recommends practices for applying dynamic software updates to computationally-intensive applications—a computing domain characterized by long-running computations, expensive computing resources, and a tedious deployment process. This dissertation argues that updating computationally-intensive applications dynamically can reduce their time-to-discovery metrics—the total time it takes from posing a problem to arriving at a solution—and, as such, should become an intrinsic part of their software lifecycle. To support this claim, this dissertation presents the following technical contributions: (1) a distributed consistency algorithm for synchronizing dynamic software updates in a parallel HPC application, (2) an implementation of the Proxy design pattern that is more efficient than the existing implementations, and (3) a dynamic update approach for Java Virtual Machine (JVM)-based applications using the Proxy pattern to offer flexibility and efficiency advantages, making it suitable for computationally-intensive applications. The contributions of this dissertation are validated through performance benchmarks and case studies involving computationally-intensive applications from the bioinformatics and molecular dynamics simulation domains. / Ph. D.
16

A Self-Reconfiguring Platform For Embedded Systems

Leon, Santiago Andres 24 August 2001 (has links)
The JBits Application Programming Interface has significantly shortened FPGA reconfiguration times by manipulating the configurable resources of the FPGAs directly under software control. The execution of JBits programs, however, requires a Java Virtual Machine to be implemented on the platform where the configurations will be modified. This presents a problem for embedded systems where a microprocessor to run a Java Virtual Machine may not be available or desirable. This thesis discusses the implementation of a FPGA platform that allows the execution of JBits programs, effectively changing the configuration of a FPGA within a FPGA. This thesis also presents a four step developing and testing strategy for JBits programs that are intended to run on this FPGA platform. / Master of Science
17

App enabling environment to Volvo CE platforms

Duff, Gerard January 2014 (has links)
This thesis was submitted to the faculty of Innovation, Design and Technology, IDT, at Mälardalen university in Västerås, Sweden as a partial fulfillment of the requirements to obtain the M.Sc. in computer science, specializing in embedded systems. The work presented was carried out in the months January to June in 2014 partially in Volvo Construction Equipment, Volvo CE, Eskilstuna, and partially at Mälardalen university in Västerås. Federated Resilient Embedded Systems Technology for AUTOSAR, FRESTA, is a collaborative project between Volvo and the Swedish Institute of Computer Science, SICS, that aims to make it possible to add third party applications to vehicle’s computer systems without compromising system security and robustness. The mechanism is developed by SICS for AUTOSAR, AUTomotive Open System ARchitecture, an open standardized automotive software architecture for vehicles. The following report documents the efforts to study and port the FRESTA mechanism to the Volvo CE platform, and develop a Java application to test the porting. The investigation will aspire to determine if it is feasible to introduce Java based third party applications to resource constrained embedded systems, without causing a deterioration in the predictability and security of the system. / Avhandlingen lades fram för fakulteten för innovation, design och teknik, IDT, vid Mälardalens högskola i Västerås som en del av kraven för att erhålla M.Sc. i datavetenskap med inriktning mot inbyggda system. Arbetet genomfördes under månaderna januari till juni 2014 delvis i Volvo Construction Equipment, Volvo CE, Eskilstuna, och delvis vid Mälardalens högskola i Västerås. Federated Resilient Embedded Systems Technology for AUTOSAR, FRESTA, är ett samarbetsprojekt mellan Volvo och Svenska Institutet för datavetenskap, SICS, som syftar till att göra det möjligt att lägga tredjepartsapplikationer till fordonets datorsystem utan att äventyra systemets säkerhet och robusthet. Mekanismen är utvecklat av SICS för AUTOSAR, Automotive Open System Architecture, en öppen standardiserad fordons programvaruarkitektur för fordon. Följande rapport dokumenterar arbetet med att studera Fresta mekanismen till Volvo CE-plattformen, och utveckla ett Java-program för att testa portning. Undersökningen kommer att sträva efter att avgöra om det är genomförbart att införa en Java-baserad tredje part för att resursbegränsa inbyggda system, utan att orsaka en försämring av förutsägbarhet och säkerhet i systemet.
18

App enabling environment for Volvo CE platforms

Duff, Gerard January 2015 (has links)
No description available.
19

Performance Measurement Of A Java Virtual Machine

Pramod, B S 07 1900 (has links) (PDF)
No description available.
20

The SHAP Microarchitecture and Java Virtual Machine

Preußer, Thomas B., Zabel, Martin, Reichel, Peter 14 November 2012 (has links)
This report presents the SHAP platform consisting of its microarchitecture and its implementation of the Java Virtual Machine (JVM). Like quite a few other embedded implementations of the Java platform, the SHAP microarchitecture relies on an instruction set architecture based on Java bytecode. Unlike them, it, however, features a design with well-encapsulated components autonomously managing their duties on rather high abstraction levels. Thus, permanent runtime duties are transferred from the central computing core to concurrently working components so that it can actually spent a larger fraction of time executing application code. The degree of parallelity between the application and the runtime implementation is increased. Currently, the stack and heap management including the automatic garbage collection are implemented this way. After detailing the design of the microarchitecture, the SHAP implementation of the Java Virtual Machine is described. A major focus is laid on the presentation of the layout and the use of the runtime data structures representing the various language abstractions provided by Java. Also, the boot sequence starting the JVM is described.

Page generated in 0.0653 seconds