Spelling suggestions: "subject:"tet"" "subject:"beet""
11 |
Numerical experiments of jet streak ageostrophic circulations using pseudo-geostrophic initialization and perspectivesBlack, Tommy Lee. January 1984 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1984. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 181-185).
|
12 |
Numerical simulation of non-linear jet streak adjustmentVan Tuyl, Andrew Hugh. January 1981 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1981. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 101-102).
|
13 |
Characteristics of the jet stream over South AmericaStevens, Merrill Doyle. January 1965 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1965. / eContent provider-neutral record in process. Description based on print version record. Bibliography: l. 47-48.
|
14 |
Effects of upstream nozzle geometry on rectangular free jetsTipnis, T. J 17 September 2010 (has links)
This study is aimed at understanding the effects of changing the upstream nozzle geometry on the development of rectangular free jets. An existing converging rectangular nozzle with an exit aspect ratio of 4 and a circular inlet (AR4 nozzle) has been used as the basic configuration for this work. The study is primarily based on the results of numerical simulations wherein the internal geometry variation is accomplished by changing the inlet aspect ratio (AR,) and the length of the converging section, expressed as a ratio with respect to the length of the nozzle (called 'converging section ratio*, CSR); all the other parameters are kept constant. The results from LDA experiments done on the AR4 nozzle are presented and used as validation data for the CPD simulations. Analyses of the numerical results help in understanding the variation of the jet spreading for different combinations of AR, and CSR. Two parameters are identified for describing the jet development: the cross-over point (XC), defined as the location downstream of the exit where the jet half-velocity-widths (B) along the major and minor axes are equal, and the difference in the half-velocity-widths at 30 nozzle equivalent diameters (Dm) from the exit (AB30), to ascertain the occurrence of axis-switching. For a given AR,, XC varies linearly with CSR; the variation of XC is non-linear with AR, for a constant CSR. The A1330 variation is non-linear with both AR, and CSR; the other variable being kept constant. The data obtained from the simulations are further used to propose two parametric models which can be used to predict the occurrence of axis-switching, within the scope of this work. The parametric models are validated and future work is proposed.
|
15 |
Effects of upstream nozzle geometry on rectangular free jetsTipnis, T J 17 September 2010 (has links)
This study is aimed at understanding the effects of changing the upstream nozzle geometry on the development of rectangular free jets. An existing converging rectangular nozzle with an exit aspect ratio of 4 and a circular inlet (AR4 nozzle) has been used as the basic configuration for this work. The study is primarily based on the results of numerical simulations wherein the internal geometry variation is accomplished by changing the inlet aspect ratio (AR,) and the length of the converging section, expressed as a ratio with respect to the length of the nozzle (called 'converging section ratio*, CSR); all the other parameters are kept constant. The results from LDA experiments done on the AR4 nozzle are presented and used as validation data for the CPD simulations. Analyses of the numerical results help in understanding the variation of the jet spreading for different combinations of AR, and CSR. Two parameters are identified for describing the jet development: the cross-over point (XC), defined as the location downstream of the exit where the jet half-velocity-widths (B) along the major and minor axes are equal, and the difference in the half-velocity-widths at 30 nozzle equivalent diameters (Dm) from the exit (AB30), to ascertain the occurrence of axis-switching. For a given AR,, XC varies linearly with CSR; the variation of XC is non-linear with AR, for a constant CSR. The A1330 variation is non-linear with both AR, and CSR; the other variable being kept constant. The data obtained from the simulations are further used to propose two parametric models which can be used to predict the occurrence of axis-switching, within the scope of this work. The parametric models are validated and future work is proposed.
|
16 |
Composants MEMS pour l’aéronautique : application au contrôle actif d’écoulements / MEMS components for aeronautics : application on active flow controlGimeno Monge, Leticia 17 June 2009 (has links)
Les besoins de l’industrie aéronautique en matière de contrôle d’écoulements peuvent trouver réponse parmi des possibilités offertes par les microtechnologies. Ce travail présente le dimensionnement, la réalisation et la caractérisation d’actionneurs MEMS générateurs de microjets synthétiques à membrane souple pour le contrôle actif d’écoulements. On y trouve aussi la réalisation d’un prototype de microcapteur à fil chaud pour la caractérisation d’écoulements aérauliques submillimétriques. Le travail s’appuie sur des études analytiques, des simulations et des expériences sur les microdispositifs réalisés. La technique d’actionnement électromagnétique utilisée apparaît comme la plus adaptée aux forces nécessaires pour l’obtention des performances souhaitées. L’encombrement des dispositifs est inférieur au centimètre cube et leur consommation maximale est de 600 mW. Le fonctionnement optimal se situe sur une plage de fréquences comprise entre 400 Hz et 700 Hz. Pour un orifice de sortie de 600 µm de diamètre, le dispositif affiche des vitesses maximales comprises entre 25 m/s et 55 m/s. Des prototypes de capteur de type fil chaud d’échelle submillimétrique ont également été réalisés. Plusieurs longueurs d’élément sensible ont été élaborées (entre 100 µm et 600 µm) sur un support en couche mince de diamant nanocristallin de 600 µm de long. L’aboutissement de ce procédé technologique constitue un premier pas vers l’obtention de microcapteurs robustes adaptés à la caractérisation d’écoulements aérauliques à l’échelle submillimétrique et vers la constitution d’un système de contrôle réactif d’écoulement. / Active flow control applications for the aeronautical industry can benefit from the possibilities of microtechnologies. This thesis presents a synthetic microjet generator for active flow control that has been designed, fabricated and characterized. The fabrication of a hot-wire microsensor prototype for submillimetric airflow characterization is shown as well. Analytical studies, numerical simulations and experimental tests of the fabricated microdevices were performed. Electromagnetic actuation is used as driving technique because it stands out as the best adapted means for providing the necessary forces for the desired performances. The size of the fabricated microdevices does not exceed one cm3 and their maximum consumption reaches 600 mW. Optimum working point is in the frequency range between 400 Hz and 700 Hz. In this range, a 600 µm diameter outlet microdevice reaches maximum speeds between 25 m/s and 55 m/s. Micro hot-wire sensor prototypes have also been fabricated. Several wire-lengths were produced (between 100 µm and 600 µm) over a 600 µm long thin-film nanocristalline diamond support structure. The validation of this technological process is a first step towards both the realization of robust microsensors adapted to submillimetric airflow characterization and the integration of a complete reactive flow control system.
|
17 |
The peripheral jet pump : laboratory model & practical applications for incompressible materials transportKadota, Paul Tamotsu January 1988 (has links)
The peripheral jet pump is examined in both theoretical and in practical applications. One-dimensional, force-momentum theory is applied in a jet pump setting for incompressible fluids. Results from a laboratory model are used for applications design. The scope of
practical applications examined include:
1) use as a fish pump,
2) as part of a crab-sampling device,
3) feasibility as a ship's bow thruster.
The laboratory tests revealed the inadequacy of the current theory for wide jet spray patterns. The benefit of wide jets on suction and non-benefit on lift performance were established. Other performance aiding factors such partial submergence, partial blockage, and having the jets located at the suction inlet are studied for one phase, two phase and three phase pumping.
Also, as a complement to the written theory, computer programs which model the theoretical performance of peripheral jet pumps are available on 5.25" floppy disks. The programs are written for use on IBM PC and compatible computers.
*IBM is a registered trademark of International Business Machines. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
|
18 |
Numerical and experimental investigations on multiple air jets in counterflow for generating aircraft gas turbine engine inlet flow distortion patternsSivapragasam, M. January 2014 (has links)
The performance of an aircraft gas turbine engine is adversely affected by the non-uniform or distorted flow in the inlet duct. Inlet flow distortion lowers the surge margin of the engine‟s compression system with surge occurring at much lower pressure ratios at all engine speeds. The compressor and/or engine are subjected to ground tests in the presence of inlet distortion to evaluate its performance. The simplest method of simulating inlet distortion during these tests is by installing a distortion screen ahead of the engine on the test bed. The uniform inlet flow to the compressor becomes nonuniform with total pressure loss after passing through the distortion screen. Though the distortion screens offer a number of significant advantages, they have some disadvantages. The air jet distortion system can alleviate many of the operational disadvantages encountered with the conventional distortion screens. The system consists of a number of air jets arranged in a circumferential array in a plane and issuing opposite to the primary air flow entering the engine. The jets interact with the primary stream and cause a local total pressure loss due to momentum exchange. The individual mass flow rates from the jets can be varied to obtain a required total pressure pattern ahead of the compressor at the Aerodynamic Interface Plane (AIP). A systematic study of the flow field of confined, turbulent, incompressible, axisymmetric jet issuing into counterflow is covered in this research programme. The jet penetration length and the jet width are reduced compared to unconfined counterflow and a linear relationship between the velocity ratio and the jet length ceases to be valid. The flow field of a circular compressible turbulent jet and then a system of four jets arranged circumferentially and issuing into a confined counterflow was studied experimentally and numerically. For the four jet system the mass flow rates in the four jets were equal in the first part of the study and in the second part they were unequal. The loss in total pressure due to the jet(s) interacting with the counterflow was quantified by a total pressure loss parameter λp0. The total pressure loss increased with increasing mass flow ratio. The total pressure loss distribution was evaluated at several locations behind the jet injector(s). The total pressure non-uniformity quantified by Distortion Index (DI) was found to be highest at a location just downstream of the jet injector and at far downstream locations low values of DI were observed. From the understanding gained with a single jet and four jets in counterflow a methodology was developed to generate a given total pressure distortion pattern at the AIP. The methodology employs computations to obtain the total pressure distortion at the AIP with quasi-one-dimensional inviscid analysis used as a starting point to estimate the mass flow rate in the jets. The inviscid analysis also provides a direction to the iterative procedure to vary the mass flow rate in the jets at the end of each computational step. The methodology is demonstrated to generate a given total pressure distortion pattern using four jets and is further extended to a larger number of jets, twelve and later twenty jets. The total pressure distortion patterns typical of use in aircraft gas turbine engine testing are generated accurately with a smaller number of jets than reported in the literature.
|
19 |
Mass loading and Stokes number effects in steady and unsteady particle-laden jets.Foreman, Richard J. January 2008 (has links)
In single phase, steady, turbulent axisymmetric jets, the time-averaged velocity field can be characterised by the decay in centreline velocity and increased spread with increasing distance from the jet orifice. In a two-phase or ‘particle-laden’ jet, the particles will modulate the jet turbulence and exchange momentum with the gas phase. Consequently, these effects reduce both the centreline velocity decay and spreading rates with respect to the single-phase jet. Empirical exponential scaling factors were found by previous authors to describe the reduced centreline decay and spreading rates well for low Stokes numbers. In this thesis, power-law scaling factors are found to scale well a wide range of centreline velocity decay and spreading rate data published over the past 40 years, for a wide range of Stokes numbers. The power-law scaling is composed of three different regimes. For low Stokes numbers St₀ ≲20, it is found that the gas phase centreline velocity, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹, and the velocity profile half widths r₁/ ₂ collapse if plotted as a function of x/D(1+Ø₀)⁻¹. Here, u₀ is the exit velocity, Ø₀ is the exit mass loading, x is the axial coordinate and D is the pipe diameter. For intermediate Stokes numbers, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹ and r₁/ ₂ collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/². For high Stokes numbers St₀ ≳ 200, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/² and the half width is approximately independent of Ø₀. In addition to the velocity of the gas phase, other aspects of particle- laden jets are found to be amenable to scaling by power-law functions. It is found that reported solid phase mass flux data scales similarly to gas phase measurements. Limited solid phase concentration and entrainment measurements reported in the literature are also found to scale by power-law functions. Whereas that limited data was obtained from the literature, measurements of the distribution of particles in particle-laden jets were conducted to further assess the validity of the scaling regimes to the solid phase. A planar light scattering technique is conducted to measure the distribution of particles in an axisymmetric jet and their subsequent scaling (or lack thereof) are reported for a variation in Ø₀, Stokes number and gas phase jet exit density. For Stokes numbers based on the pipe friction velocity St* ₀ ∼ 1, half widths of particle distributions were found to scale with x/D(1+Ø₀)⁻¹/² . The apparent centreline concentration was found to be independent of Ø₀ at this same St* ₀ . For Stokes numbers based on the pipe friction velocity St*₀ < 1, half widths are independent of Ø₀. The effect of the other parameters, i.e. Stokes number and density ratio, on centreline distributions and half widths are also investigated. Measurements of particle distributions, delivered via an annular channel, in a triangular oscillating jet (OJ) flow are also reported for a variation in momentum ratio, the ratio of OJ momentum to channel momentum and mass loading. The results of the variation in momentum ratio on particle distributions are compared with an existing precessing jet (PJ) study. It is the aim of this study to determine the experimental conditions for which the OJ nozzle is superior to the PJ nozzle. The use of an OJ nozzle is preferable at an industrial scale by virtue of its lower driving pressure compared with a PJ nozzle. It is found that particle distributions in a PJ flow spread at a greater rate with increasing momentum ratio compared with the spread of particles in an OJ flow. However, at momentum ratios approximately less than unity, the absolute spread from an OJ is greater. This also corresponds to nozzle driving pressure less than approximately 10kPA. For an increase in mass loading, the spread of particle distribution in the OJ decreases and recirculation increases. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337352 / Thesis (M.Eng.Sc.) -- University of Adelaide, School of Mechanical Engineering, 2008
|
20 |
Mass loading and Stokes number effects in steady and unsteady particle-laden jets.Foreman, Richard J. January 2008 (has links)
In single phase, steady, turbulent axisymmetric jets, the time-averaged velocity field can be characterised by the decay in centreline velocity and increased spread with increasing distance from the jet orifice. In a two-phase or ‘particle-laden’ jet, the particles will modulate the jet turbulence and exchange momentum with the gas phase. Consequently, these effects reduce both the centreline velocity decay and spreading rates with respect to the single-phase jet. Empirical exponential scaling factors were found by previous authors to describe the reduced centreline decay and spreading rates well for low Stokes numbers. In this thesis, power-law scaling factors are found to scale well a wide range of centreline velocity decay and spreading rate data published over the past 40 years, for a wide range of Stokes numbers. The power-law scaling is composed of three different regimes. For low Stokes numbers St₀ ≲20, it is found that the gas phase centreline velocity, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹, and the velocity profile half widths r₁/ ₂ collapse if plotted as a function of x/D(1+Ø₀)⁻¹. Here, u₀ is the exit velocity, Ø₀ is the exit mass loading, x is the axial coordinate and D is the pipe diameter. For intermediate Stokes numbers, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹ and r₁/ ₂ collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/². For high Stokes numbers St₀ ≳ 200, u₀/uc collapses if plotted as a function of x/D(1 + Ø₀)⁻¹/² and the half width is approximately independent of Ø₀. In addition to the velocity of the gas phase, other aspects of particle- laden jets are found to be amenable to scaling by power-law functions. It is found that reported solid phase mass flux data scales similarly to gas phase measurements. Limited solid phase concentration and entrainment measurements reported in the literature are also found to scale by power-law functions. Whereas that limited data was obtained from the literature, measurements of the distribution of particles in particle-laden jets were conducted to further assess the validity of the scaling regimes to the solid phase. A planar light scattering technique is conducted to measure the distribution of particles in an axisymmetric jet and their subsequent scaling (or lack thereof) are reported for a variation in Ø₀, Stokes number and gas phase jet exit density. For Stokes numbers based on the pipe friction velocity St* ₀ ∼ 1, half widths of particle distributions were found to scale with x/D(1+Ø₀)⁻¹/² . The apparent centreline concentration was found to be independent of Ø₀ at this same St* ₀ . For Stokes numbers based on the pipe friction velocity St*₀ < 1, half widths are independent of Ø₀. The effect of the other parameters, i.e. Stokes number and density ratio, on centreline distributions and half widths are also investigated. Measurements of particle distributions, delivered via an annular channel, in a triangular oscillating jet (OJ) flow are also reported for a variation in momentum ratio, the ratio of OJ momentum to channel momentum and mass loading. The results of the variation in momentum ratio on particle distributions are compared with an existing precessing jet (PJ) study. It is the aim of this study to determine the experimental conditions for which the OJ nozzle is superior to the PJ nozzle. The use of an OJ nozzle is preferable at an industrial scale by virtue of its lower driving pressure compared with a PJ nozzle. It is found that particle distributions in a PJ flow spread at a greater rate with increasing momentum ratio compared with the spread of particles in an OJ flow. However, at momentum ratios approximately less than unity, the absolute spread from an OJ is greater. This also corresponds to nozzle driving pressure less than approximately 10kPA. For an increase in mass loading, the spread of particle distribution in the OJ decreases and recirculation increases. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337352 / Thesis (M.Eng.Sc.) -- University of Adelaide, School of Mechanical Engineering, 2008
|
Page generated in 0.0751 seconds