• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 11
  • 11
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Internal Geometry on Pre-chamber Combustion Concept in a Lean Burn Natural Gas Engine

Hlaing, Ponnya 23 August 2022 (has links)
The road transport sector, dominated by internal combustion engines, accounts for as high as 23% of annual carbon emissions and is considered the major area where urgent carbon reduction strategies are required. Natural gas is considered one of the intermediate fuels to reduce carbon emissions before net carbon neutral solutions can be achieved. Methane (CH4), a major constituent of natural gas, has the highest hydrogen-to-carbon ratio among the naturally occurring hydrocarbons, and the CO2 emission from natural gas combustion is around 25% less than diesel combustion. Lean combustion shows promises for improved engine efficiency, thereby reducing carbon emissions for a given required power output. However, igniting lean natural gas mixtures requires high ignition energy, beyond the capability of spark ig nition. The pre-chamber combustion (PCC) concept can provide the required ignition energy with relatively simple components. While most pre-chamber designs found in the literature are bulky and require extensive cylinder head modifications or complete engine redesign, the narrow-throat pre-chamber design can readily fit the diesel injector pockets of most heavy-duty engines without the need for substantial hardware modifications. The unique pre-chamber design is significantly different from the contemporary pre-chamber geometries, and its engine combustion phenomena and operating characteristics are largely unknown. This thesis work investigates the effect of important pre-chamber dimensions, such as the volume, nozzle hole diameter, and throat diameter, on the engine operating characteristics and emission trends. The experiments focus on the lean operation with excess air ratios (λ) exceeding 1.6, which can be achieved by auxiliary fuel injection into the pre-chamber. The air-fuel mixture formation process inside the pre-chamber is also investigated by employing 1-D and 3-D CFD simulations, where the engine experiments provided the boundary conditions. From the simulation results, a correlation between the injected and the trapped fuel in the pre-chamber is proposed by theoretical scavenging models to estimate the air-fuel ratio in the pre-chamber with high accuracy. Although the studies largely rely on thermodynamic engine experiments, the 1-D engine simulation implements the engine studies in estimating the mixture composition and heat transfer losses from the engine.
2

Alternative ignition systems for CNG in diesel applications

Zakis, George January 2003 (has links)
Ignition and combustion enhancement of lean homogeneous mixtures offers the potential to simultaneously lower pollutant emissions and improve the thermal efficiency of internal combustion engines. A single cylinder, high compression ratio (16.5:1), open chamber diesel engine has been converted to operate on homogenously charged compressed natural gas (CNG) with the aim of minimising pollutant emissions such as oxides of nitrogen, particulate matter and carbon dioxide. Three ignition systems were tested to examine how effectively they could ignite lean mixtures of CNG with the ultimate aim of achieving simultaneously high thermal efficiency and low oxides of nitrogen emissions. The ignition systems examined were spark ignition (SI), diesel pilot ignition (DPI) and hydrogen assisted jet ignition (HAJI). Irrespective of ignition system used, the efficiency of the engine operating on CNG was significantly reduced at part load compared to diesel. This was predominantly due to a greater amount of unburnt hydrocarbons, higher cycle-by-cycle variability, slow and partial burns and increased heat transfer to the walls. DPI and HAJI systems were able to extend the lean limit to lambda 2.7 and 3.3 respectively, however this did not result in efficiency gains over SI systems. HAJI proved to be superior to DPI with higher peak efficiency, lower carbon dioxide, carbon monoxide and particulates, and significantly lower oxides of nitrogen in the absence of a locally rich ignition source. (For complete abstract open document)
3

ANALYTICAL AND COMPUTATIONAL STUDY OF TURBULENT-HOT JET IGNITION PROCESS IN METHANE-HYDROGEN-AIR MIXTURES

Mohammad Ebrahim Feyz (7431221) 06 December 2019 (has links)
<div>Pressure-gain combustion in wave rotors offer the opportunity for substantial improvement in gas turbine efficiency and power, while controlling emissions with fuel flexibility, if provided rapid and reliable ignition of lean mixtures. In addition, tightening emission regulations and increasing availability of gas fuels for internal-combustion engines require more reliable ignition for ultra-lean operation to avoid high peak combustion temperature. Turbulent jet ignition (TJI) is able to address the ignition challenges of lean premixed combustion. Especially, the turbulent hot jet results in faster ignition penetration for wave rotor pressure-gain combustors that have high-frequency operation and fast-burn requirements. Controllability of TJI needs better understanding of the chemistry and fluid mechanics in the jet mixing region, particularly the estimation of ignition delay time and identifying the location of the ignition onset. </div><div>In the present work, numerical and analytical methods are employed to develop models capable of estimating the ignition characteristics that the turbulent hot jet exhibits as it is issued to a cold stoichiometric CH4-H2-Air mixture with varied fuel reactivity blends. Numerical models of the starting turbulent jet are developed by Reynolds-averaged and large-eddy simulation of Navier-Stokes and scalar transport equations in a high-resolution computational domain, with major focus on ignition of high-reactivity fuel blends in the jet near-field due to computational resource limitations. The chemical reactions are modeled using detailed chemistry by well-stirred and partially stirred reactor approaches. Numerical models describe the temporal evolution of jet mixture fraction, scalar dissipation rate, flow strain rate, and thermochemical quantities of the flow.</div><div>For faster estimation of ignition characteristics, analytical methods are developed to explicitly solve governing equations for the transient evolution of the near field and the leading vortex of the starting hot jet. First, the transient radial evolution of the turbulent shear-layer of a round transient jet is analytically investigated in the near-field of the nozzle, where the momentum potential core exists. The methods approximate the mixing and chemical processes in the jet shear and mixing layer. The momentum equation is integrated analytically, with a mixing-length turbulence model to represent the variation of effective viscosity due to the velocity gradients. The analytic predictions of the velocity field and mass entrainment rate of the jet are compared with numerical predictions and experimental findings. In addition, the transport equation of conserved scalars in the jet near-field is solved analytically for the history of the jet mixture fraction. This analytic solution for temperature and species is used, together with available models for instantaneous chemical induction time, to create an analytic ignition model that provides the time and radial location of the ignition onset.</div><div>Lastly, the ignition mechanism within the vortex ring, which leads the starting turbulent jet, is modeled using prior understanding about the mixing characteristics of the vortex. This mechanism is more relevant to low-reactivity fuel blends. Due to the presence of strong mixing at the large-scale, the vortex ring is treated as a homogeneous batch-reactor, which contains certain levels of the jet mixture fraction. This assumption provides the initial composition and temperature of the reactor in which ignition ensues. </div><div>This article-dissertation is developed as a collection of 4 articles published in peer-reviewed journals, one submitted article, and additional unpublished work. The study is laid out in 6 chapters with the following contributions:</div><div>Chapter 1: This chapter numerically investigates the three-dimensional behavior of a transient hot jet as modeled using the Reynolds-averaged turbulence flow. The study aims at providing an insight towards the role of mixing in the ignition progress and how the operating conditions such as fuel mixture and pre-chamber pressure ratio can influence the ignition success. An ignition prediction criterion is developed in this chapter, which helps to predict the ignition success under a broad range of operating conditions.</div><div>Chapter 2: In this chapter, the large-eddy simulation (LES) of hot jet ignition is reported in conjunction with detailed kinetics mechanism and adaptive-mesh refinement. The correlation between local values of mixture fraction gradient and ignition is discussed. Furthermore, the role of methane-hydrogen ratio on the heat release pattern is studied for two specific mixtures.</div><div>Chapter 3: The LES of CH4-H2-Air ignition is extended in this chapter to account for multivariable evaluation of ignition. Joint probability assessment of ignition explains the role of important scalars on the formation and growth of ignition. Also, the effect of CH4-H2 ratio on the spatial distribution of ignition is assessed and discussed.</div><div>Chapter 4: In this chapter, the rate of mass entrainment into the jet in the near-field region is studied. Characterization of the mass entrainment illuminates the understanding of mixing behavior of the starting turbulent jets. Through an exact solution of the momentum equation, this chapter includes a model of the diffusive transport in a round transient jet at high Reynolds numbers.</div><div>Chapter 5: This chapter proposes a method to evaluate the mass/heat exchange between a transient-turbulent jet and a quiescent environment. To analyze the transport phenomena in the jet near-field, the transient diffusion equation in cylindrical coordinates is explicitly solved and its solution is compared with the empirical findings. The transport solution then enables an ignition model to describe the spatiotemporal characteristics of ignition in the near-field.</div><div>Chapter 6: The development of ignition within the vortex ring of the transient jet is investigated in this chapter. The initiation, growth, and departure of the vortex ring are studied using the available empirical correlations and the LES. Using a perfectly-stirred, zero-dimensional representation of the vortex, chemical kinetic calculations provide estimates of ignition delay for various fuel mixtures.</div><div><br></div>
4

Experimental investigation of hot-jet ignition of methane-hydrogen mixtures in a constant-volume combustor

Paik, Kyong-Yup 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Investigations of a constant-volume combustor ignited by a penetrating transient jet (a puff) of hot reactive gas have been conducted in order to provide vital data for designing wave rotor combustors. In a wave rotor combustor, a cylindrical drum with an array of channels arranged around the axis spins at a high rpm to generate high-temperature and high-pressure product gas. The hot-gas jet ignition method has been employed to initiate combustion in the channels. This study aims at experimentally investigating the ignition delay time of a premixed combustible mixture in a rectangular, constant-volume chamber, representing one channel of the wave rotor drum. The ignition process may be influenced by the multiple factors: the equivalence ratio, temperature, and the composition of the fuel mixture, the temperature and composition of the jet gas, and the peak mass flow rate of the jet (which depends on diaphragm rupture pressure). In this study, the main mixture is at room temperature. The jet composition and temperature are determined by its source in a pre-chamber with a hydrogen-methane mixture with an equivalent ratio of 1.1, and a fuel mixture ratio of 50:50 (CH4:H2 by volume). The rupture pressure of a diaphragm in the pre-chamber, which is related to the mass flow rate and temperature of the hot jet, can be controlled by varying the number of indentations in the diaphragm. The main chamber composition is varied, with the use of four equivalence ratios (1.0, 0.8, 0.6, and 0.4) and two fuel mixture ratios (50:50, and 30:70 of CH4:H2 by volume). The sudden start of the jet upon rupture of the diaphragm causes a shock wave that precedes the jet and travels along the channel and back after reflection. The shock strength has an important role in fast ignition since the pressure and the temperature are increased after the shock. The reflected shock pressure was examined in order to check the variation of the shock strength. However, it is revealed that the shock strength becomes attenuated compared with the theoretical pressure of the reflected shock. The gap between theoretical and measured pressures increases with the increase of the Mach number of the initial shock. Ignition delay times are obtained using pressure records from two dynamic pressure transducers installed on the main chamber, as well as high-speed videography using flame incandescence and Schileren imaging. The ignition delay time is defined in this research as the time interval from the diaphragm rupture moment to the ignition moment of the air/fuel mixture in the main chamber. Previous researchers used the averaged ignition delay time because the diaphragm rupture moment is elusive considering the structure of the chamber. In this research, the diaphragm rupture moment is estimated based on the initial shock speed and the longitudinal length of the main chamber, and validated with the high-speed video images such that the error between the estimation time and the measured time is within 0.5%. Ignition delay times decrease with an increase in the amount of hydrogen in the fuel mixture, the amount of mass of the hot-jet gases from the pre-chamber, and with a decrease in the equivalence ratio. A Schlieren system has been established to visualize the characteristics of the shock wave, and the flame front. Schlieren photography shows the density gradient of a subject with sharp contrast, including steep density gradients, such as the flame edge and the shock wave. The flame propagation, gas oscillation, and the shock wave speed are measured using the Schlieren system. An image processing code using MATLAB has been developed for measuring the flame front movement from Schlieren images. The trend of the maximum pressure in the main chamber with respect to the equivalence ratio and the fuel mixture ratio describes that the equivalence ratio 0.8 shows the highest maximum pressure, and the fuel ratio 50:50 condition reveals lower maximum pressure in the main chamber than the 30:70 condition. After the combustion occurs, the frequency of the pressure oscillation by the traversing pressure wave increases compared to the frequency before ignition, showing a similar trend with the maximum pressure in the chamber. The frequency is the fastest at the equivalence ratio of 0.8, and the slowest at a ratio of 0.4. The fuel ratio 30:70 cases show slightly faster frequencies than 50:50 cases. Two different combustion behaviors, fast and slow combustion, are observed, and respective characteristics are discussed. The frequency of the flame front oscillation well matches with that of the pressure oscillation, and it seems that the pressure waves drive the flame fronts considering the pressure oscillation frequency is somewhat faster. Lastly, a feedback mechanism between the shock and the flame is suggested to explain the fast combustion in a constant volume chamber with the shock-flame interactions.
5

<strong>PRE-CHAMBER JET IGNITION IN AN OPTICALLY-ACCESSIBLE CONSTANT-VOLUME GASOLINE ENGINE</strong>

Dong Eun Lee (16637403) 08 August 2023 (has links)
<p>In Chapter 2, an experiment has been developed to investigate the passive pre-chamber jet ignition process in gasoline engine configurations and low-load operating conditions. The apparatus adopted a modified 4-cylinder 2.0L gasoline engine to enable single-cylinder operation. To reduce the complexity, the piston position was fixed at a predefined position relative to the top dead center (TDC) to simulate thermodynamic conditions at ignition and injection timings. High-speed Infrared (IR) imaging was applied to visualize the jet penetration and ignition process inside the main cylinder and to investigate the cyclic spatial variability. Two passive pre-chambers with different total nozzle areas and numbers of nozzles were used. In addition, the pre-chamber volume and pressure at ignition timing were varied to examine their effect on jet ignition performance. Misfire behavior was observed in the main chamber of all test cases, and the results suggested that the main cause is a high Residual Mass Fraction (RMF) in the pre-chamber affecting the subsequent cycle. A larger total nozzle area, smaller volume, higher pressure, and fuel-lean operation tended to mitigate the misfire behavior. For a test case with a spark pressure of 6 bar, a reduced cyclic variability in terms of coefficient of variation peak cylinder pressure (COVPmax) from 10.03% to 7.38% and combustion phasing variation from 81 crank angle degree (CAD) to 12 CAD were observed with increasing pre-chamber volume-to-area (V/A) ratio from 59.37 m to 103.11 m, but slightly higher misfire frequency was observed, from 46.67% to 50.00%, suggesting an accurate combination of pre-chamber design parameters is needed to improve overall performance at low-load operation.</p> <p>In Chapter 3, it examines the influence of passive pre-chamber nozzle diameter and dilution level on jet formation and engine performance. Utilizing a modified constant-volume gasoline direct injection engine with an optically-accessible piston, we tested three passive pre-chambers with nozzle diameters of 1.2, 1.4, and 1.6 mm, while nitrogen dilution varied from 0 to 20%. With the help of high-speed imaging, we captured pre-chamber jet formations and subsequent flame propagation within the main chamber. Our novel findings reveal that asymmetric temporal and spatial jet formation patterns arising from pre-chambers significantly impact engine performance. The larger nozzle diameter pre-chambers exhibited the least variation in jet formation due to their improved scavenging and main mixture filling processes, but had the slowest jet velocity and lowest jet penetration depth. At no dilution condition, the 1.2 mm-PC demonstrated superior performance attributed to higher pressure build-up in the pre-chamber, resulting in accelerated jet velocity and increased jet penetration depth. However, at high dilution condition, the 1.6 mm-PC performed better, highlighting the importance of scavenging and symmetry jet formation. This study emphasizes the importance of carefully selecting the pre-chamber nozzle diameter, based on the engine's operating conditions, to achieve an optimal and balanced configuration that can improve both jet formation and jet characteristics, as well as scavenging.</p> <p>In Chapter 4, it investigates the influence of passive pre-chamber nozzle diameter on jet ignition and subsequent main chamber combustion under varying load conditions and dilution levels using a constant-volume optical gasoline direct injection engine. The results reveal that as the load decreases, both fuel availability and flow conditions deteriorate, leading to delayed and inferior jet characteristics that affect main chamber ignition and combustion processes. In high and medium load conditions without dilution, the smallest nozzle diameter pre-chamber (1.2mm-PC) shows improved jet ignition and main combustion due to earlier jet ejection, enhanced penetration, and intensified jet. This is facilitated by the smaller nozzle diameter enabling faster and higher pre-chamber pressurization. Conversely, under low load conditions, the largest nozzle diameter pre-chamber (1.6mm-PC) performs better, likely due to improved scavenging and reduced residual levels, resulting in less compromised pre-chamber combustion and subsequent jet characteristics. The nozzle diameter also has a significant impact on cycle-to-cycle variations, with smaller diameters enhancing jet ignition performance but increasing variability. The effect of external residuals (dilution) on jet ignition performance varies depending on the nozzle diameter, with the 1.6mm-PC exhibiting less degradation and demonstrating earlier jet ejection and CA50 timing compared to smaller nozzle diameter pre-chambers at higher dilution conditions. The improved scavenging and relatively lower residual levels in the larger nozzle diameter pre-chamber contribute to its increased resistance to dilution and potential extension of dilution tolerance.</p> <p>In Chapter 5, it presents an analysis of the effects of pre-chamber nozzle orientation on dilution tolerance in a constant-volume optical engine. Using a combination of experimental and numerical methodologies, we provide novel insights into how variations in nozzle number, orientation, and size influence combustion performance under different dilution conditions. The findings reveal that an increase in the number of nozzles, for a fixed A/V ratio, tends to enhance ignition performance and stability across a range of dilution scenarios, primarily due to an increase in ignition points and a larger ignition surface area. Meanwhile, swirling pre-chambers, despite their potential to boost initial combustion performance at no dilution condition, may limit dilution tolerance due to the complexity of their internal flow dynamics and increased heat loss through nozzle surfaces. Furthermore, pre-chambers combining swirling and straight nozzle orientations fail to synergize the benefits of each type, and instead, exacerbate challenges such as heat loss, flame quenching, and unfavorable flow dynamics. These findings emphasize the complexity and nuanced trade-offs involved in optimizing pre-chamber design for improved dilution tolerance and suggest potential directions for future research in this area.</p> <p>In Chapter 6, it investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically-accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0 to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37-43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited. The study identified that increasing pre-chamber nozzle diameter resulted in a larger dispersion of knock cycles and more severe knock intensity, likely due to shorter jet penetration depth requiring more time for end-gas consumption. Strategies for mitigating knock in pre-chamber combustion systems include reducing the pre-chamber volume for a fixed A/V ratio and increasing dilution level. The results of this study offer valuable insights for developing effective knock mitigation approaches in pre-chamber combustion systems, contributing to the advancement of more efficient and reliable engines.</p> <p>In Chapter 7, a numerical investigation of different premixed gaseous injection strategies was performed to understand their impact on the scavenging and mixture formation of an air-fuel premixed pre-chamber with high exhaust gas recirculation (EGR) operations. EGR dilution is effective for reducing coolant heat loss, pumping work at throttled conditions, and mitigates knock at high-load conditions, thus increasing engine efficiency. To further extend the EGR limit of an air-fuel premixed pre-chamber engine, the effects of different injection strategies (including timing, duration, pressure, pre-chamber volume, and hardware) on the EGR level, trap efficiency, and parasitic loss were determined. Regardless of injection duration and upstream pressure, injecting too early not only increased the amount of the injected premixed gas leaking into the main chamber but also was inefficient in reducing the EGR level in the pre-chamber. To reduce the EGR level in the pre-chamber to a level where successful ignition and combustion of the pre-chamber mixture is possible, the injection timing should be delayed to be close to the ignition timing. A premixed air-fuel injection is thus proposed to reduce the time required for air-fuel mixing in the pre-chamber. With a delayed end of injection (EOI), both leakage amount and EGR level were reduced compared to the cases with earlier injection timings. The results show that an injection with 15 bar upstream pressure, 20 CA duration, EOI of −20 CAD aTDC (ignition timing), and with guided injection hardware for the base pre-chamber volume resulted in about 0.17% air compression parasitic loss, over a 94% trap efficiency, at the same time maintaining the mean EGR level in the pre-chamber below 20%, ensuring good pre-chamber combustion. With a 50% increase in pre-chamber volume from the base case, the parasitic loss increased by 65% (from 0.17% to 0.28% loss), indicating a problem with a larger pre-chamber with a separate air valve and injector.</p>
6

<b>Numerical investigation of jet formation, penetration and ignition in pre-chamber gasoline engines</b>

Tianxiao Yu (19201090) 25 July 2024 (has links)
<p dir="ltr">A three-dimensional numerical model was developed using the commercial CFD code CONVERGE to study the gas-dynamic interactions between the two chambers in a gasoline engine. The geometry and parameters of the engine used were based on a modified turbocharged GM four-cylinder 2.0 L GDI gasoline engine. Pre-chambers with nozzle diameters of 0.75 mm and 1.5 mm were used to investigate the effect of pre-chamber geometry on pre-chamber charging, combustion, and jet formation. The local developments of gas temperature and velocity were captured by adaptive mesh refinement, while the turbulence was resolved with the k-epsilon model of the Reynolds averaged Navier–Stokes (RANS) equations. The combustion process was modeled with the extended coherent flamelet model (ECFM). Data from engine experiments were compared with the computed main chamber pressures and heat release rates, and the results show good consistency with the model calculations. The scavenging and air–fuel equivalence ratio (λ) distribution of the pre-chambers improved with the larger nozzle, while the smaller nozzle generated jets with higher velocity, greater turbulence kinetic energy, and longer penetration length. Moreover, after the primary jet formation, secondary pre-chamber charging, combustion, and secondary jet formation were observed.</p><p dir="ltr">Two active PC injection strategies were designed to investigate the effect of injected hydrogen mass and PC mixture air-to-fuel equivalence ratio λ on PC combustion, jet formation, and main-chamber combustion. Stoichiometric or rich hydrogen/oxygen mixtures are actively injected into the pre-chamber to enhance the combustion processes in the pre-chamber and the main chamber. A three-dimensional numerical engine model is developed using the commercial CFD code CONVERGE. The engine geometry and parameters adopt a modified GM 4-cylinder 2.0L GDI gasoline engine. The local developments of gas temperature and velocity are resolved with the adaptive mesh refinement (AMR). The turbulence of the flow is computed with the k-epsilon model of the Reynolds averaged Navier–Stokes (RANS) equations. The turbulent combustion process is modeled with the extended coherent flamelet model (ECFM). Numerical results such as main chamber pressures and heat release rates are compared with experimental measurements, showing good consistency. Detailed analysis is performed to study the effect of the active pre-chamber injection with hydrogen on jet properties and turbulence chemistry interactions. An EGR limit of 36% was observed by injecting a stoichiometric hydrogen-oxygen mixture into the pre-chamber due to its high laminar flame speed and adiabatic flame temperature.</p>
7

Computational Modeling of Ignition and Premixed Flame Propagation Initiated by a Pre-chamber Turbulent Jet

Utsav Jain (17583528) 09 December 2023 (has links)
<p dir="ltr">Addressing the pressing need for reduced carbon emissions, Turbulent Jet Ignition (TJI) emerges as a promising technology for ultra-lean combustion, offering enhanced thermal efficiencies and minimized cyclic variability in spark-ignited engines. To facilitate rapid testing and integration of this technology, a robust computational modeling framework is crucial. This study delves into the predictive capabilities of computational models for main-chamber ignition and premixed flame propagation using a single-cycle TJI rig measured by Biswas et al. (Applied Thermal Engineering, volume 106, 2016). Employing an open-source compressible flow simulation solver with Large Eddy Simulation (LES) for turbulence modeling, the investigation integrates the conventional Laminar Finite Rate Chemistry (LFRC) model alongside the transported Probability Density Method (PDF) for turbulence-chemistry interaction. A fully-consistent Eulerian Monte-Carlo Fields (EMCF) method is utilized to approximate the transported PDF, while Interaction by Exchange with Mean is employed to close micro-mixing terms in stochastic differential equations. A reduced chemical reaction mechanism with 21 species and 84 reactions (DRM-19) is used for solving chemical kinetics, and a double Gaussian energy deposition model is used to approximate the spark ignition in the pre-chamber. An unstructured O-grid mesh with 0.3 million cells in the pre-chamber and 1 million cells in the main chamber is employed. Results are divided into two phases: pre-chamber initialization and full TJI simulations. Validation of the predicted pre-chamber flame propagation and the lean ignition in the main-chamber is carried out by using available experimental data. Under quiescent conditions, both the LFRC and transported PDF methods largely underestimate the flame speed and subsequent pressure growth in the pre-chamber. A linear momentum forcing technique is applied to investigate the impact of initial turbulence in the pre-chamber, demonstrating a notable influence on flame propagation. Fine-tuning of the forcing coefficient reproduces the sudden pressure growth observed in the experiment. The experimentally validated pre-chamber simulation serves as the initial condition for the full TJI simulations. It is found that the LFRC model fails to predict lean-ignition in the main-chamber, resulting in a misfiring event. Incorporation of turbulence-chemistry interaction using the transported PDF method substantially improves the prediction of the ignition event in the main-chamber, achieving fair qualitative agreement and quantitative validation of combustion parameters within 10% of the reported experimental data. The rich simulation results consisting of a full set of statistical description of the thermo-chemical states enable us to gain deep insights into the ignition mechanisms in the main chamber, which is limited when done experimentally. A novel dual ignition phenomenon is revealed in the TJI rig for the first time. Initially, a primary ignition kernel is formed at a downstream location which eventually detaches from the main jet. As the jet momentum decreases, a secondary ignition event follows, this time at a more upstream location which eventually combines with the primary ignition kernel to form a single connected flame front. Investigation of these ignition sequences in chemical composition space reveal distinct differences between the two. The primary ignition event in the main-chamber is followed by a large concentration of active radicals from the pre-chamber jet, accelerating the chain-branching steps, characterizing what has been referred to as flame ignition. In contrast, the secondary ignition occurs in the absence of active radicals in the pre-chamber jet, hence characterized as jet ignition. Further analysis of the effect of pre-chamber jet characteristics on lean ignition in the main-chamber is conducted by setting up cases with different initial pressure ratios (p<sub>r</sub><sup>o</sup>) between the two chambers, a non-dimensional parameter, ranging from 1.2 to 3.2. As the initial pressure ratio increases, jet momentum increases, with dual ignition observed in cases above p<sub>r</sub><sup>o</sup>= 2.2. Case with p<sub>r</sub><sup>o</sup>= 3.2 lead to misfiring. The effect of ignition sequence on global combustion characteristics of TJI is analyzed. Dual ignition events lead to non-monotonicity in combustion characteristics such as global reaction progress variable, flame penetration, and global heat release rate. In dual ignition events, although the rate of fuel consumption and global heat release rate is initially lower, the secondary ignition leads to a sudden increase in flame surface area, resulting in a sudden jump and promoting the overall performance of the TJI system.</p>
8

Experimental investigation on traversing hot jet ignition of lean hydrocarbon-air mixtures in a constant volume combustor

Chinnathambi, Prasanna 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A constant-volume combustor is used to investigate the ignition initiated by a traversing jet of reactive hot gas, in support of combustion engine applications that include novel wave-rotor constant-volume combustion gas turbines and pre-chamber IC engines. The hot-jet ignition constant-volume combustor rig at the Combustion and Propulsion Research Laboratory at the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) was used for this study. Lean premixed combustible mixture in a rectangular cuboid constant-volume combustor is ignited by a hot-jet traversing at different fixed speeds. The hot jet is issued via a converging nozzle from a cylindrical pre-chamber where partially combusted products of combustion are produced by spark- igniting a rich ethylene-air mixture. The main constant-volume combustor (CVC) chamber uses methane-air, hydrogen-methane-air and ethylene-air mixtures in the lean equivalence ratio range of 0.8 to 0.4. Ignition delay times and ignitability of these combustible mixtures as affected by jet traverse speed, equivalence ratio, and fuel type are investigated in this study.
9

Analysis of a stratified pre-chamber spark ignition system under lean mixture conditions

Pagano, Vincenzo 19 October 2020 (has links)
[EN] In the current work, the characterization of the combustion process inside a stratified pre-chamber spark ignition (PCSI) system is performed. An extensive bibliographical review about the pre-chamber systems developed from the second half of the 20th century until modern times is presented. The review shows that the latest generation systems have the potential to accomplish the emissions limits while providing high performance and low fuel consumption. Nevertheless, many efforts of the scientific community are still needed to allow the large-scale application of the technology. Indeed, based on the outstanding challenges observed, the investigation plan is developed including both experimental and numerical parts. All experiments were performed by means of the rapid compressionexpansion machine (RCEM) in the CMT-Motores Térmicos laboratory. The original cylinder head layout was modified to allow the housing of the prechamber itself, fuel injectors, spark plug, pressure transducers in both chamber, and a thermocouple. The test methodology involved the acquisition of the pressure evolution in both main chamber and pre-chamber, the piston position (used to compute the instantaneous cylinder volume), the duration of the auxiliary injection, and the spark ignition point. These are used as input for the zero-dimensional thermodynamic model which simulates the fundamental parameters aims to characterize the PCSI system working cycle. Therefore, a deeper knowledge of the mass interchanged process, induced turbulence field, heat release rate, combustion speed, and flame regime is generated. Subsequently, to calibrate the zero-dimensional model coefficients under motoring conditions, several 3D CFD simulations were carried out by means of Converge software. Hence, the results of the simulations in terms of interchanged mass and pre-chamber turbulent kinetic energy have been used to calibrate the nozzle discharge coefficient and the turbulence sub-model coefficients for all the pre-chamber geometries. Furthermore, the 3D CFD simulations outputs are analysed to fully understand the flow field structure and the local effect induced by the different nozzles at the spark activation time. The turbulent kinetic energy in terms of intensity and orientation is investigated over several relevant pre-chamber sections. The results reveal a clear relationship between the turbulence developed within the pre-chamber and the orifices structure. Straight orifices or perpendicular jets impact, promote more intense local turbulence due to direct collision while tilted orifices guarantee more homogeneity due to the swirling motion. Additionally, increase the orifice numbers shows benefits on the fluid dynamic homogeneity. Thus, preceding the experimental campaign several fundamental aspects of the system are evaluated. The cycle-to-cycle dispersion is explored by means of the statistical assessment showing low pressure peak deviation. The auxiliary injection pressure and timing are optimized for avoiding wall wetting phenomena while ensuring proper air/fuel mixing. Finally, the spark activation point is chosen as a function of the theoretically maximum turbulent flame speed. Thereby, the experimental campaign is carried out according to tests matrix, in order to evaluate the effect of the equivalence ratio of both chambers, and how the orifices diameter, number, and distribution affect the combustion process. Moreover, chemiluminescence visualization tests, performed by means of the available optical access of the RCEM, are combined with zerodimensional and 3D CFD results to shed light on the work cycle. Conclusions suggest a slightly rich mixture inside the pre-chamber combined with the highest number of tilted orifices as the better configuration for improving combustion efficiency under lean and ultra-lean main chamber mixture conditions. Nevertheless, axial orifices should be considered for further investigations. Finally, the author proposes a series of developments considered interesting in both the experimental and numerical fields. / [ES] En el presente trabajo se realiza la caracterización del proceso de combustión dentro de un sistema de encendido por pre-cámara bajo carga estratificada. Por lo tanto, se presenta una extensa revisión bibliográfica sobre los sistemas de pre-cámara desarrollados desde la segunda mitad del siglo XX hasta los tiempos modernos. El resumen muestra que los sistemas de última generación tienen el potencial de cumplir con los límites de las emisiones, al tiempo que proporcionan un alto rendimiento y un bajo consumo de combustible. No obstante, todavía se necesitan muchos esfuerzos de la comunidad científica para permitir la difusión a gran escala de la tecnología. De hecho, sobre la base de los desafíos abiertos observados, se desarrolla el plan de investigación incluyendo tanto una parte experimental como numérica. Todos los experimentos se realizan mediante la máquina de compresión-expansión rápida (RCEM) de que dispone el laboratorio CMT-Motores Térmicos . La disposición original de la culata se modificó para permitir el alojamiento de la propia pre-cámara, los inyectores , la bujía, los sensores de presión y un termopar. La metodología de ensayo implica la adquisición de la evolución de la presión tanto en cámara principal como en pre-cámara, el volumen del cilindro, la duración de la inyección auxiliar y el punto de ignición de la bujía. Estos se utilizan como parámetros de entrada para el modelo termodinámico cero-dimensional que devuelve los parámetros fundamentales que caracterizan ciclo de trabajo del sistema PCSI. Por lo tanto, se genera un conocimiento más profundo del proceso de intercambio de masas, del campo de turbulencias inducidas, de la tasa de liberación de calor, de la velocidad de combustión y del régimen de la llama. Posteriormente, para calibrar los coeficientes del modelo cero-dimensional bajo condiciones de arrastre, se llevaron a cabo varias simulaciones CFD en 3D mediante el software Converge. Por lo tanto, los resultados de las simulaciones en términos de masa intercambiada y energía cinética turbulenta de la precámara se han utilizado para calibrar el coeficiente de descarga de la tobera y los coeficientes del sub-modelo de turbulencia para todas las geometrías de la pre-cámara. Además, se analizan los resultados de las simulaciones CFD para comprender plenamente la estructura del campo de flujo y el efecto local inducido por las diferentes geometriás en el tiempo de activación de la chispa. La energía cinética turbulenta en términos de intensidad y orientación se investiga en varias secciones relevantes de la pre-cámara. Los resultados revelan una clara relación entre la turbulencia desarrollada dentro de la pre-cámara y la estructura de los orificios. Los orificios rectos o los chorros perpendiculares, promueven una turbulencia local más intensa debido a la colisión directa mientras que los orificios inclinados del campo fluido y del dosado. Precedentemente al desarrollo de la campaña experimental se evalúan varios aspectos fundamentales del sistema. La dispersión ciclo a ciclo se explora por medio de la evaluación estadística que muestra una baja desviación de los picos de presión. La presión y el punto de inyección auxiliar se optimizan para evitar los fenómenos de mojado de las paredes, asegurando al mismo tiempo una mezcla adecuada de aire/combustible. Finalmente, el punto de activación de la chispa se elige en función de la velocidad máxima teórica de la llama turbulenta. De este modo, la campaña experimental se lleva a cabo de acuerdo con la matriz de pruebas, con el fin de evaluar el efecto del dosado equivalente de ambas cámaras, y cómo el diámetro, el número y la distribución de los orificios afectan al proceso de combustión. Además, las pruebas de visualización de quimioluminiscencia, realizadas mediante el acceso óptico disponible de la RCEM, se combinan con resultados de CFD y resultados del modelo cerodimen para arrojar luz sobre el ciclo de trabajo. Las conclusiones sugieren que una mezcla ligeramente rica dentro de la pre-cámaracombinadaconelmayornúmerodeorificiosdesfasadoseslamejor configuración para garantizar un elevada eficiencia de la combustión en condiciones de mezcla pobre y ultra-pobre de la cámara principal. No obstante, los orificios axiales deben ser considerados para investigaciones futuras. Por último, el autor propone una serie de desarrollos considerados interesantes tanto en el campo experimental como en el numérico. / [CA] En el present treball es realitza la caracterització del procés de combustió dins d'un sistema d'encesa de pre-cambra soto càrrega estratifi-cada. Per tant, es presenta una extensa revisió bibliogràfica sobre els sistemes de precambra desenvolupats des de la segona meitat del segle XX fins als temps moderns. El resum mostra que els sistemes d'última generació tenen el potencial de complir amb els límits de les emissions, al mateix temps que proporcionen un alt rendiment i un baix consum de combustible. No obstant això, encara es necessiten molts esforços de la comunitat científica per a permetre la difusió a gran escala de la tecnologia. De fet, sobre la base dels desafiaments oberts observats, es desenvolupa el pla d'investigació incloent tant una part experimental com numèrica. Tots els experiments es realitzen mitjançant la màquina de compressió-expansió ràpida (RCEM) de què disposa el laboratori CMT-Motors Tèrmics. La disposició original de la culata es va modificar per a permetre l'allotjament de la pròpia pre-cambra, els injectors , la bugia, els sensors de pressió i un termoparell. La metodologia d'assaig implica l'adquisició de l'evolució de la pressió tant en cambra principal com en pre-cambra, el volum del cilindre, la duració de la injecció auxiliar i el punt d'ignició de l'espurna. Aquests s'utilitzen com a paràmetres d'entrada per al model termodinàic zero-dimensional que retorna els paràmetres fonamen-tals que caracteritzen cicle de treball del sistema PCSI. Per tant, es genera un coneixement més profund del procés d'intercanvi de masses, del camp de turbulències induïdes, de la taxa d'alliberament de calor, de la velocitat de combustió i del règim de la flama. Posteriorment, per a calibrar els coefi-cients del model zerodimensional sota condicions d'arrossegament, es van dur a terme diverses simulacions CFD en 3D mitjançant el programari Converge. Per tant, els resultats de les simulacions en termes de massa intercanviada i energia cinètica turbulenta de la pre-cambra s'han utilitzat per a calibrar el coeficient de descàrrega de la tovera i els coeficients del sub-model de turbulència per a totes les geometries de la pre-cambra. A més, s'analitzen els resultats de les simulacions CFD per a comprendre plenament l'estructura del camp de flux i l'efecte local induït per les diferents geometries en el temps d'activació de l'espurna. L'energia cinètica turbulenta en termes d'intensitat i orientació s'investiga en diverses seccions rellevants de la pre-cambra. Els resultats revelen una clara relació entre la turbulència desenvolupada dins de la pre-cambra i l'estructura dels orificis. Els orificis rectes o els dolls perpendiculars, promouen una turbulència local més intensa a causa de la col·lisió directa mentre que els orificis inclinats garanteixen una major homogeneïtat a causa de la generació d'un macro-remolì. A més, l'augment del nombre d'orificis mostra beneficis en l'homogeneïtat fluid-dinàmica. Llavors, abans de la campanya experimental s'avaluen diversos aspectes fonamentals del sistema. La dispersió cicle a cicle s'explora per mitjà de l'avaluació estadística que mostra una baixa desviació dels pics de pressió. La pressió i el punt d'injecció auxiliar s'optimitzen per a evitar els fenòmens de mullat de les parets, assegurant al mateix temps una mescla adequada d'aire/combustible. Finalment, el punt d'activació de l'espurna es tria en funció de la velocitat màxima teòrica de la flama turbulenta. D'aquesta manera, la campanya experimental es duu a terme d'acord amb la matriu de proves, amb la finalitat d'avaluar l'efecte del dosatge equivalent de totes dues cambres, i com el diàmetre, el numero i la distribució dels orificis afecten el procés de combustió. A més, les proves de visualització de quimioluminescència, realitzades mitjançant l’accés òptic disponible de la RCEM, es combinen amb resultats de CFD i resultats del model zero-dimensional per a llançar llum sobre el cicle de treball. Les conclusions suggereixen que una mescla lleugerament rica dins de la pre-cambra combinada amb el major nombre d’orificis desfasats és la millor configuració per a garantir un elevada eficiència de la combustió en condicions de mescla pobra i ultra-pobre de la cambra principal. No obstant això, els orificis axials han de ser considerats per a investigacions futures. Finalment, l’autor proposa una sèrie de desenvolupaments considerats interessants tant en el camp experimental com en el numèric. / Pagano, V. (2020). Analysis of a stratified pre-chamber spark ignition system under lean mixture conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/152486
10

Development of Combustion Indicators for Control of Multi-Fuel Engines Based on New Combustion Concepts

Jiménez, Irina Ayelén 28 February 2022 (has links)
[ES] Debido a las regulaciones en materia de emisiones y CO2 la industria automotriz a desarrollado diferentes tecnologías innovadoras. Estas tecnologías incluyen combustibles alternativos y nuevos modos de combustión, entre otros. De aquí surge la necesidad del desarrollo de nuevos métodos para el control de la combustión en estas condiciones mencionadas. Por este motivo, en este trabajo se han desarrollado diferentes modelos e indicadores orientados al diagnóstico y control de la combustión tanto en condiciones normales como anormales. Para los casos de combustión normal, se ha desarrollado un modelo de combustión, cuyo objetivo es estimar la media de la evolución de la fracción de la masa quemada y la presión dentro del cilindro. Se implementó un observador, basado en la señal de knock, con la finalidad de mejorar la estimación en condiciones transitorias y poder aplicar así el modelo a diferentes tipos de combustibles. También se presenta un modelo de variabilidad cíclica, en el cual, a partir del modelo de combustión, se propaga una distribución en dos de los parámetros de dicho modelo. Ambos modelos han sido aplicados para un motor de encendido provocado y un motor de combustión de encendido por chorro turbulento. En los casos de combustión anormal, se ha incluido un análisis de la resonancia dentro de la cámara de combustión, en donde también se desarrollaron dos modelos capaces de estimar la evolución de la resonancia. Estos modelos, tanto para condiciones normales como anormales, se utilizaron para el diagnóstico de la combustión. Por una parte, para la detección de knock, en donde tres estrategias de detección de knock fueron desarrolladas: dos basadas en el sensor de presión en cámara y una en el sensor de knock. Por otra parte, se realizó una aplicación de un modelo de resonancia para la mejora de la estimación de la masa atrapada a partir de la resonancia. Finalmente, para mostrar el potencial de los modelos de diagnóstico, dos aplicaciones a control se desarrollaron: una para el control de knock a través de la actuación de la chispa, y otra para el control de gases residuales, a través de la actuación de la distribución variable, realizando paralelamente una optimización de la combustión a través de la actuación de la chispa. / [CA] Impulsada per les regulacions en matèria d'emissions i CO2 la indústria automotriu a desenvolupat diferents tecnologies inovadore. Aquestes tecnologies inclouen combustibles alternatius i nous modes de combustió, entre altres. D'ací sorgix la necessitat posar en pràctica nous mètodes per al control de la combustió. En aquest context, el present trevall proposa diferents models i indicadors orientats al diagnòstic i control de la combustió tant en condicions normals com anormals. Per als casos de combustió normal, es proposa un model de combustió, l'objectiu del qual és estimar la mitjana de l'evolució de la fracció de la massa cremada i la pressió dins del cilindre. Es va implementar un observador, basat en la senyal de knock, amb la finalitat de millorar l'estimació en condicions transitòries i poder aplicar així el model a diferents tipus de combustibles. També es presenta un model de variabilitat cíclica, en el qual, a partir del model de combustió, es propaga una distribució en dos dels parametres del dit model. Ambdós models han sigut aplicats a un motor d'encesa provocada i un motor de combustió d'encesa per doll turbulent. Als casos de combustió anormal, s'ha inclos un anàlisi de la ressonància dins de la cambra de combustió, on també es van desenvolupar dos models capaços d'estimar l'evolució de la ressonància. Aquests models, tant per a condicions normals com anormals, s'utilitzen per al diagnòstic de la combustió. Per una part, per a la detecció de knock, on tres estratègies de detecció de knock s'han desenvolupat: dues basades en el sensor de pressió a la cambra de combustió i una altra basada en el sensor de knock. Per altra part, es va realitzar una aplicació d'un model de ressonància per a la millora de l'estimació de la massa atrapada a partir de la ressonància. Finalment, per a mostrar el potencial dels models de diagnòstic, dos aplicacions de control es van desenvolupar: una per al control de knock a través de l'actuació de l'espurna, i una altra per al control de gasos residuals, a través de l'actuació de la distribució variable, realitzant paral·lelament una optimització de la combustió a través de l'actuació de l'espurna. / [EN] The need to satisfy emissions and CO2 regulations is pushing the automotive industry to develop different innovative technologies. These technologies include alternative fuels and new modes of combustion, among others. Therefore, the need for the development of new methods for combustion control in these mentioned conditions arises. For this reason, in this work different models and indicators have been developed aimed at the diagnosis and control of combustion in both normal and abnormal conditions. For normal combustion cases, a combustion model has been developed, the objective of this model is to estimate the mean of evolution of the mass fraction burned and the in-cylinder pressure. An observer had been implemented, based on knock sensor signal, in order to improve the estimation in transient conditions and also to be able to make use of the model with different fuels. A cyclic variability model is also presented, where from the combustion model, a probability distribution is propagated over two of the parameters of such model. Both models had been applied for a spark ignition engine and a turbulent jet ignition combustion engine. For the abnormal combustion cases, an analysis of the resonance within the combustion chamber had been included, where two models capable of estimating the evolution of the resonance were also developed. These models, for both normal and abnormal conditions, were used for the diagnosis of combustion: on the one hand, for knock recognition, where three knock detection strategies were developed: two based on the in-cylinder pressure sensor and one on the knock sensor. On the other hand, an application of a resonance model was carried out in order to improve the estimation of the trapped mass from the resonance excitation. Finally, to show the potential of such models and applications, two control strategies were developed: one for the control of knock through the actuation of the spark advance, and a second for the control of residual gases, through the actuation of the variable valve timing, while optimizing the combustion through the actuation of the spark advance. / El trabajo desarrollado en esta tesis ha sido posible gracias a la financiación de la Generalitat Valenciana y el fondo social europeo a través de la beca 132 GRISO- LIAP/2018/132 y BEFPI/2021/042. / Jiménez, IA. (2022). Development of Combustion Indicators for Control of Multi-Fuel Engines Based on New Combustion Concepts [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181561

Page generated in 0.0979 seconds