• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations On Film Cooling At Hypersonic Mach Number Using Forward Facing Injection From Micro-Jet Array

Sriram, R 01 August 2008 (has links)
A body in a hypersonic flow field will experience very high heating especially during re-entry. Conventionally this problem is tackled to some extent by the use of large angle blunt cones. At the cost of increased drag, the heat transfer rate is lower over most parts of the blunt body, except in a region around the stagnation point. Thus even with blunt cones, management of heat transfer rates and drag on bodies at hypersonic speeds continues to be an interesting research area. Various thermal protection systems have been proposed in the past, like heat sink cooling, ablation cooling and aerospikes. The ablative cooling system becomes extremely costly when reusability is the major concern. Also the shape change due to ablation can lead to issues with the vehicle control. The aerospikes themselves may become hot and ablate at hypersonic speeds. Hence an alternate form of cooling system is necessary for hypersonic flows, which is more feasible, cost effective and efficient than the conventional cooling systems. Injection of a mass of cold fluid into the boundary layer through the surface is one of the potential cooling techniques in the hypersonic flight corridors. These kinds of thermal protection systems are called mass transfer cooling systems. The injection of the mass may be through discrete slots or through a porous media. When the coolant is injected through a porous media over the entire surface, the coolant comes out as a continuous mass. Such a cooling system is also referred as “transpiration cooling system”. When the fluid is injected through discrete slots, the system is called as “film cooling system”. In either case, the coolant absorbs the incoming heat through its rise in enthalpy and thus modifies the boundary layer characteristics in such a way that the heat flow rate to the surface is less. Injection of a forward facing jet (opposite to the freestream direction) from the stagnation point of a blunt body can be used for mitigating both the aerodynamic drag and heat transfer rates at hypersonic Mach numbers. If the jet has enough momentum it can push the bow shock forward, resulting in reduced drag. This will also reduce heat transfer rate over most part of the body except around the jet re-attachment region. A reattachment shock impinging on the blunt body invariably increases the local heat flux. At lower momentum fluxes the forward facing jet cannot push the bow shock ahead of the blunt body and spreads easily over the boundary layer, resulting in reduced heat transfer rates. While the film cooling performance improves with mass flow rate of the jet, higher momentum flow rates can lead to a stronger reattachment leading to higher heat transfer rate at the reattachment zone. If we are able to reduce the momentum flux of the coolant for the same mass flow rate, the gas coming out can easily spread over the boundary layer and it is possible to improve the film cooling performance. In all the reported literature, the mass flow rate and the momentum flux are not varied independently. This means, if the mass flow rate is increased, there is a corresponding increase in the momentum flux. This is because the injection (from a particular orifice and for a particular coolant gas) is controlled only by the total pressure of injection and free stream conditions. The present investigation is mainly aimed at demonstrating the effect of reduction in momentum of the coolant (injected opposing a hypersonic freestream from the stagnation point of a blunt cone), keeping the mass flow rate the same, on the film cooling performance. This is achieved by splitting a single jet into a number of smaller jets of same injection area (for same injection total pressure and same free stream conditions). To the best of our knowledge there is no report on the use of forward facing micro-jet array for film cooling at hypersonic Mach numbers. In this backdrop the main objectives of the present study are: • To experimentally demonstrate the effect of splitting a single jet into an array of closely spaced smaller micro-jets of same effective area of injection (injected opposite to a hypersonic freestream from the stagnation zone), on the reduction in surface heat transfer rates on a large angle blunt cone. · Identifying various parameters that affect the flow phenomenon and doing a systematic investigation of the effect of the different parameters on the surface heat transfer rates and drag. Experimental investigations are carried out in the IISc hypersonic shock tunnel on the film cooling effectiveness. Coolant gas (nitrogen and helium) is injected opposing hypersonic freestream as a single jet (diameter 2 mm and 0.9 mm), and as an array of iv micro jets (diameter 300 micron each) of same effective area (corresponding to the respective single jet). The coolant gas is injected from the stagnation zone of a blunt cone model (58o apex angle and nose radius of 35 mm). Experiments are performed at a flow freestream Mach number of 5.9 at 0o angle of attack, with a stagnation enthalpy of 1.84 MJ/Kg, with and without injections. The ratios of the jet stagnation pressure to the pitot pressure (stagnation pressure ratio) used in the present study are 1.2 and 1.45. Surface convective heat transfer measurements using platinum thin film sensors, time resolved schlieren flow visualization and aerodynamic drag measurements using accelerometer force balance are used as flow diagnostics in the present study. The theoretical stagnation point heat transfer rate without injection for the given freestream conditions for the test model is 79 W/cm2 and the corresponding aerodynamic drag from Newtonian theory is 143 N. The measured drag value without injection (125 N) shows a reasonable match with theory. As the injection is from stagnation zone it is not possible to measure the surface heat transfer rates at the stagnation point. The sensors thus are placed from the nearest possible location from the stagnation point (from 16 mm from stagnation point on the surface). The sensors near the stagnation point measures a heat transfer rate of 65 W/cm2 on an average without any injection. Some of the important conclusions from the study are: • Up to 40% reduction in surface heat transfer rate has been measured near the stagnation point with the array of micro jets, nitrogen being the coolant, while the corresponding reduction was up to 30% for helium injection. Considering the single jet injection, near the stagnation point there is either no reduction in heat transfer rate or a slight increase up to 10%. · Far away from stagnation point the reduction in heat transfer with array of micro-jets is only slightly higher than corresponding single jet for the same pressure ratio. Thus the cooling performance of the array of closely spaced micro jets is better than the corresponding single jet almost over the entire surface. • The time resolved flow visualization studies show no major change in the shock standoff distance with the low momentum gas injection, indicating no major changes in other aerodynamic aspects such as drag. · The drag measurements also indicate that there is virtually no change in the overall aerodynamic drag with gas injection from the micro-orifice array. · The spreading of the jets injected from the closely spaced micro-orifice array over the surface is also seen in the visualization, indicating the absence of a region of strong reattachment. · The reduction in momentum flux of the injected mass due to the interaction between individual jets in the case of closely spaced micro-jet array appears to be the main reason for better performance when compared to a single jet. The thesis is organized in six chapters. The importance of film cooling at hypersonic speeds and the objectives of the investigation are concisely presented in Chapter 1. From the knowledge of the flow field with counter-flow injection obtained from the literature, the important variables governing the flow phenomena are organized as non-dimensional parameters using dimensional analysis in Chapter 2. The description of the shock tunnel facility, diagnostics and the test model used in the present study is given in Chapter 3. Chapter 4 describes the results of drag measurements and flow visualization studies. The heat transfer measurements and the observed trends in heat transfer rates with and without coolant injection are then discussed in detail in Chapter 5. Based on the obtained results the possible physical picture of the flow field is discussed in Chapter 6, followed by the important conclusions of the investigation.
2

Experimental and Numerical Investigations of Confluent Round Jets

Svensson, Klas January 2015 (has links)
Unconfined multiple interacting confluent round jets are interesting from a purely scientific point of view, as interaction between neighboring jets brings additional complexity to the flow field. Unconfined confluent round jets also exist in various engineering applications, such as ventilation supply devices, sewage disposal systems, combustion burners, chemical mixing or chimney stacks. Even so, little scientific attention has been paid to unconfined confluent round jets. The present work uses both advanced measurement techniques and computational models to provide deeper understanding of the turbulent flow field development of unconfined confluent round jets. Both Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) have been used to measure mean velocity and turbulence properties within two setups, consisting of a single row of 1×6 jets and a square array of 6×6 confluent jets. Simulations using computational fluid dynamics (CFD) of the 6×6 setup were conducted using three different Reynolds Averaged Navier-Stokes (RANS) turbulence models: the standard k-ε, the RNG k-ε and the Reynolds Stress model (RSM). The results from the CFD simulations were compared with experimental data. The employed RANS turbulence models were all capable of accurately predicting mean velocities and turbulent properties in the investigated confluent jet array. In general the RSM and k-ε std. models provided smaller deviations between numerical and experimental results than the RNG k-ε model. In terms of mean velocity the second-order closure model (RSM) was not found to be superior to the less complex standard k-ε model. The validated CFD model was employed in a parametrical investigation, including five independent variables: inlet velocity, nozzle diameter, nozzle edge-to-edge spacing, nozzle height and the number of jets in the array. The parametrical investigations made use of statistical methods in the form of response surface methodology. The derived response surface models provided information on the principal influence and relative importance of the investigated parameters within the investigated design space. The positions of the jets within the array strongly influence both mean velocity and turbulence. In all investigated setups the jets experience merging and combining. Square arrays also include considerable jet convergence, which was not present in the 1×6 jet array. Due to the jet convergence in square arrays the turbulent flow field, especially for jets far away from the array center, is affected by mean flow curvature. Jets located along the sides of square jet arrays experience strong jet-to-jet interactions that result in considerable jet deformation, shorter potential core, higher turbulent kinetic energy and faster velocity decay compared to other jets. Jets located at the corners of the array do not interact as strongly with neighboring jets as do the jets along the sides. The locations of merging and combined points differ considerably between different jets and different jet configurations. As the jets combine a zone with uniform stream-wise velocity and low turbulence intensity forms in the center of square jet arrays. This zone has been called Confluent Core Zone (CCZ) due to its similarities with the potential core zone of a single jet. Within the CCZ the appropriate scaling length changes from nozzle diameter to the effective source diameter. The parametrical investigation showed that nozzle diameter and edge-to-edge nozzle spacing were the most important of the investigated parameters, reflecting a strong dependence on dimensionless jet spacing, S/d0. Higher S/d0 delays both merging and combining of the jets and leads to a CCZ with lower velocity and longer downstream extension. Increasing the array size leads to a reduced combined point distance, a stronger inwards displacement of jets in the outer part of the array, and reduced entrainment near the nozzles. A higher inlet velocity was found to increase the jet convergence in the investigated square confluent jet arrays. Nozzle height generally has minor impact on the investigated response variables.
3

Etude des transferts thermiques par batteries de jets pour la trempe du verre

Wannassi, Manel 16 July 2013 (has links)
La trempe à l’air est largement utilisée dans les procédés de production de verre de sécurité. L’obtention d’une distribution de contraintes adéquate requiert un refroidissement intense et homogène à la fois, et ces deux propriétés sont difficiles à obtenir sur la courte durée de la trempe. Les batteries de jets utilisées dans la plupart des systèmes de trempe produisent un refroidissement adéquat mais souffrent d’inhomogénéité, à l’origine de défauts de trempe et de casse durant le processus.L’objectif de cette thèse est d’explorer des nouvelles configurations qui améliorent l’homogénéité du refroidissement en préservant son intensité. L’approche choisie consiste à implanter des jets rotatifs dans les réseaux de manière à accentuer le mélange des jets avant impact. Les études ont été menées principalement par simulation numérique, corroborées par des visualisations par enduit gras sur un banc d’essai dédié, conçu et réalisé dans le cadre de cette thèse.La première phase a été consacrée à la conception des générateurs de jets rotatifs et à l’étude de leur dynamique en mode isolé. Le développement d’une structure tourbillonnaire se formant à l’entrée de chaque lobe du dispositif de mise en rotation a été mis en évidence. L’interaction des jets rotatifs dans le réseau de refroidissement constitue la deuxième phase. Il apparait que la structure cellulaire du schéma d’impact n’est que marginalement perturbée par les jets rotatifs et que la présence de ces derniers n’influe que peu sur la dynamique de l’écoulement. Enfin, la modélisation détaillée des transferts de chaleur sur la plaque d’impact montre que les jets rotatifs ne contribuent que faiblement au refroidissement, mais que l’interférence avec le réseau de jets simples augmente légèrement le transfert de chaleur local au niveau de leur impact. Sans avoir obtenu les résultats escomptés, cette thèse a toutefois montré la complexité du système et le couplage fort entre les phases d’alimentation et d’évacuation de l’air de refroidissement. / Air quenching is widely applied in security glass manufacturing processes. Proper residual stresses distribution requires strong and homogeneous cooling and both are difficult to achieve over the very short time of the tempering process. Jet arrays used in most processes provide with sufficient cooling but suffer from inherent inhomogeneity, leading to quality loss of the glass product and, in extreme cases, to unacceptable breaking numbers during production.The objective of the present study is to investigate ways to improve cooling homogeneity while maintaining efficiency. For this purpose, swirling jets are located inside the jet arrays to enhance jet mixing prior to impingement. Numerical simulation is performed, corroborated by oil flow visualization and a dedicated test bench has been designed and set up within the frame of this thesis.The first part was concerned with the design of swirlers and their dynamic behaviour in standalone mode. It has been shown that a vortex is forming at the inlet of each swirl compartment. Inserting the swirlers within jet arrays constitutes the seconf phase. It turns out that the cellular structure of the impingement pattern is only marginally affected by the swirlers, which have a weak influence on the flow dynamics. Last, the detailed heat transfer modeling on the impingement surface shows that the swirlers themselves do barely contribute to the overall cooling, while the coupling with the simple jet array slightly improves the local heat transfer close to the impingement area. Although the expected outcome was not achieved, this thesis showed the flow complexity as well as the strong coupling between the feeding and the exhaust phases experienced by the cooling air.
4

Numerische und experimentelle Untersuchung der fluiddynamischen Eigenschaften von Strahlströmungen in begrenzten Räumen

Ringleb, Ansgar 03 April 2018 (has links)
In der vorliegenden Arbeit wurden Strömungen räumlich begrenzter Strahlen untersucht. Zum einen wurde die Ausströmung eines runden Strahls in ein Rohr betrachtet, der sog. begrenzte Strahl. Zum anderen wurde die Ausströmung von 7 hexagonal angeordneten runden Strahlen in ein Rohr betrachtet, das sog. hexagonale Strahlbündel. Die Motivation zur vorliegenden Arbeit ergab sich aus der Entwicklung von Durchflussmessgeräten, die als Bypassapparaturen ausgeführt sind und stromabwärts des Staudruckkörpers ein Strömungsgebiet mit begrenzten Strahlen aufweisen. Dafür wurden mit Hilfe der Ähnlichkeitstheorie die zugrundeliegenden Kennzahlen bestimmt. Besonderes Augenmerk lag auf der Charakterisierung der instationären bzw. turbulenten Strömungseigenschaften für Reynolds-Zahlen zwischen 1.000 und 20.000. Es wurden die selbstähnlichen Eigenschaften der Strömungen untersucht, wobei sich insbesondere für den begrenzten Strahl wichtige Erkenntnisse ergaben. Für das hexagonale Strahlbündel wurden mit Hilfe der numerischen Strömungssimulation die grundlegenden Eigenschaften des Strömungsfeldes untersucht. Dabei weisen die Geometriekennzahlen einen dominierenden Einfluss auf. So konnten in Abhängigkeit zum Durchmesserverhältnis und Strahlabstand drei Strömungsformen identifiziert und experimentell mittels Laser-Doppler Anemometrie nachgewiesen werden. Eine wesentliche Fragestellung bestand in der Anwendung der numerischen Strömungssimulation, des RANS-Ansatzes und des SST-Turbulenzmodells. Dazu wurde die Anpassung der Modellkoeffizienten untersucht, wobei für den begrenzten Strahl ein allgemein gültiger Satz gefunden wurde. / In the present work flows of spatially limited radiation were investigated. On the one hand, the outflow of a round jet into a pipe was considered, the so-called confined jet. On the other hand, the outflow of 7 hexagonal arranged round jets into a pipe was con-sidered, the so-called hexagonal jet array. The motivation for the present work arose from the development of flowmeters which are designed as bypass apparatures that have a jet array flow downstream of the dynamic pressure body. For this purpose the underlying similarity parameters were determined. Special attention was paid to the cha-racterization of transient and turbulent flow properties for Reynolds numbers between 1,000 and 20,000. The self-similar properties of the flows were investigated with im-portant findings in particular for the confined jet. For the hexagonal jet array the basic properties of the flow field were investigated by using computational fluid dynamics. The geometric similarity parameters have a dominant influence. Thus, depending on the di-ameter ratio and jet distance ratio, three flow patterns could be identified and experimen-tally detected by the use of laser Doppler anemometry. An important question was the application of the computational fluid dynamic method, the RANS approach and the SST turbulence model. For this purpose a generally valid set of model coefficients was found for the confined jet flow.

Page generated in 0.0589 seconds