Spelling suggestions: "subject:"tet engine -- combustion"" "subject:"tet engine -- ombustion""
1 |
Three-dimensional transient numerical study of hot-jet ignition of methane-hydrogen blends in a constant-volume combustorKhan, Md Nazmuzzaman January 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ignition by a jet of hot combustion product gas injected into a premixed combustible mixture from a separate pre-chamber is a complex phenomenon with jet
penetration, vortex generation, flame and shock propagation and interaction. It has
been considered a useful approach for lean, low-NOx combustion for automotive engines, pulsed detonation engines and wave rotor combustors. The hot-jet ignition
constant-volume combustor (CVC) rig established at the Combustion and Propulsion
Research Laboratory (CPRL) of the Purdue School of Engineering and Technology
at Indiana University-Purdue University Indianapolis (IUPUI) is considered for numerical study. The CVC chamber contains stoichiometric methane-hydrogen blends,
with pre-chamber being operated with slightly rich blends. Five operating and design
parameters were investigated with respect to their eff ects on ignition timing. Di fderent pre-chamber pressure (2, 4 and 6 bar), CVC chamber fuel blends (Fuel-A: 30%
methane + 70% hydrogen and Fuel-B: 50% methane + 50% hydrogen by volume), active radicals in pre-chamber combusted products (H, OH, O and NO), CVC chamber
temperature (298 K and 514 K) and pre-chamber traverse speed (0.983 m/s, 4.917
m/s and 13.112 m/s) are considered which span a range of fluid-dynamic mixing and
chemical time scales. Ignition delay of the fuel-air mixture in the CVC chamber is
investigated using a detailed mechanism with 21 species and 84 elementary reactions
(DRM19). To speed up the kinetic process adaptive mesh refi nement (AMR) based
on velocity and temperature and multi-zone reaction technique is used.
With 3D numerical simulations, the present work explains the e ffects of pre-chamber pressure, CVC chamber initial temperature and jet traverse speed on ignition for a speci fic set of fuels. An innovative post processing technique is developed
to predict and understand the characteristics of ignition in 3D space and time.
With the increase of pre-chamber pressure, ignition delay decreases for Fuel-A
which is the relatively more reactive fuel blend. For Fuel-B which is relatively less
reactive fuel blend, ignition occurs only for 2 bar pre-chamber pressure for centered
stationary jet. Inclusion of active radicals in pre-chamber combusted product decreases the ignition delay when compared with only the stable species in pre-chamber
combusted product. The eff ects of shock-flame interaction on heat release rate is observed by studying flame surface area and vorticity changes. In general, shock-flame
interaction increases heat release rate by increasing mixing (increase the amount of
deposited vorticity on flame surface) and flame stretching. The heat release rate is
found to be maximum just after fast-slow interaction.
For Fuel-A, increasing jet traverse speed decreases the ignition delay for relatively
higher pre-chamber pressures (6 and 4 bar). Only 6 bar pre-chamber pressure is
considered for Fuel-B with three di fferent pre-chamber traverse speeds. Fuel-B fails
to ignite within the simulation time for all the traverse speeds.
Higher initial CVC temperature (514 K) decreases the ignition delay for both fuels
when compared with relatively lower initial CVC temperature (300 K). For initial
temperature of 514 K, the ignition of Fuel-B is successful for all the pre-chamber
pressures with lowest ignition delay observed for the intermediate 4 bar pre-chamber
pressure. Fuel-A has the lowest ignition delay for 6 bar pre-chamber pressure.
A speci fic range of pre-chamber combusted products mass fraction, CVC chamber
fuel mass fraction and temperature are found at ignition point for Fuel-A which were
liable for ignition initiation. The behavior of less reactive Fuel-B appears to me more
complex at room temperature initial condition. No simple conclusions could be made
about the range of pre-chamber and CVC chamber mass fractions at ignition point.
|
2 |
Numerical study of innovative scramjet inlets coupled to combustors using hydrocarbon-air mixtureMalo-Molina, Faure Joel 06 April 2010 (has links)
To advance the design of hypersonic vehicles, high-fidelity multi-physics CFD is used to characterize 3-D scramjet flow-fields in two novel streamline traced configurations. The two inlets, Jaws and Scoop, are analyzed and compared to a traditional rectangular inlet used as a baseline for on/off-design conditions. The flight trajectory conditions selected are Mach 6 and a dynamic pressure of 1,500 psf (71.82 kPa). Analysis of these hypersonic inlets is performed to investigate distortion effects downstream with multiple single cavity combustors acting as flame holders, and several fuel injection strategies. The best integrated scramjet inlet/combustor design is identified. The flow physics is investigated and the integrated performance impact of the two innovative scramjet inlet designs is quantified. Frozen and finite rate chemistry is simulated with 13 gaseous species and 20 reactions for an Ethylene/air finite-rate chemical model. In addition, URANS and LES modeling are compared to explore overall flow structure and to contrast individual numerical methods.
The flow distortion in Jaws and Scoop is similar to some of the distortion in the traditional rectangular inlet, despite design differences. The baseline and Jaws performance attributes are stronger than Scoop, but Jaws accomplishes this while eradicating the cowl lip interaction, and lessening the total drag and spillage penalties.
The innovative inlets work best on-design, whereas for off-design, the traditional inlet is best. Early pressure losses and flow distortions in the isolator aid the mixing of air and fuel, and improve the overall efficiency of the system. Although the trends observed with and without chemical reactions are similar, the former yields roughly 10% higher mixing efficiency and upstream reactions are present. These show a significant impact on downstream development. Unsteadiness in the combustor increases the mixing efficiency, varying the flame anchoring and combustion pressure effects upstream of the step.
|
Page generated in 0.0743 seconds