• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 323
  • 1
  • Tagged with
  • 324
  • 324
  • 324
  • 303
  • 303
  • 303
  • 303
  • 220
  • 213
  • 205
  • 203
  • 201
  • 201
  • 201
  • 197
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Larval ecology and synchronous reproduction of two crustacean species : Semibalanus balanoides in New England, USA and Gecarcinus quadratus in Veraguas, Panama

Gyory, Joanna January 2011 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), February 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 136-146). / The environmental cues for synchronous reproduction were investigated for two highly abundant, ecologically important crustacean species: the temperate acorn barnacle, Semibalanus balanoides, and the tropical terrestrial crab, Gecarcinus quadratus. Larval ecology of these two species was also studied to determine potential sources of larval mortality and recruitment success. High-frequency observations revealed that early-stage larval abundance of S. balanoides was related to storms, and possibly turbidity. Field observations and experiments studied the effect of turbidity and phytoplankton on larval release response. Release coincided with increased turbidity at three sites along the northeast coast of the United States. A three-year time series of phytoplankton and zooplankton data showed that larval release was not consistently related to phytoplankton abundance (total or single species). When gravid barnacles were exposed to phytoplankton or synthetic beads, they released in response to both, suggesting that presence of particles is more important than identity of particles. Feeding experiments showed that adult cannibalism on newly released larvae is lower in highly turbid conditions. It is suggested here that S. balanoides synchronizes its reproduction with the onset of phytoplankton blooms, but turbidity may fine-tune the timing if it provides predation refuge for larvae. Adult G. quadratus females undertake synchronized breeding migrations to the ocean after the first rains of the rainy season, presumably when the risk of desiccation is lowest. They wait for darkness and an ebbing tide before releasing their eggs into the water. First-stage zoeas have dark pigmentation, long dorsal and rostral spines, and a pair of lateral spines. Hatching in darkness may help zoeas avoid predation from planktivorous diurnal fish, and the zoeal spines may deter predation from planktivorous nocturnal fish. In the laboratory, a G. quadratus zoea reached the megalopa stage in 21 days. A mass migration of megalopae and juveniles out of the water was observed 30 days after adult females released their eggs. Plankton pump samples taken near the island suggest that zoea abundance and distribution may be related to the phase of the internal tide. Synchronous reproduction in these two species appears to be the result of predator avoidance behaviors. / by Joanna Gyory. / Ph.D.
322

The redox and iron-sulfide geochemistry of Salt Pond and the thermodynamic constraints on native magnetotactic bacteria

Canovas, Peter A January 2006 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (p. 64-68). / Salt pond is a meromictic system with an outlet to the sea allowing denser seawater to occupy the monimolimnion while the mixolimnion has relatively low salinity and is the site of greater mixing and microbial activity. The density contrast between the two layers allows for a unique geochemical environment characterized by steep redox gradients at the interface. This chemocline is a habitat for magnetotactic bacteria (MB), and the spatial and temporal distribution of MB in the system along with geochemical (Fe2+, H2S, pH, 02 (aq), etc.) profiles have been analyzed from 2002 - 2005. It has been previously observed that magnetite-producing cocci occupy the top of the chemocline and greigite-producing MB occur at the base of the chemocline and in the sulfidic hypolimnion. This distribution may be attributed to analyte profiles within the pond; depth profiles show a sudden drop of dissolved oxygen (DO) at the chemocline associated with an increase in dissolved Fe (II) concentrations that peak where both 02 and H2S are low. In the sulfidic hypolimnion, Fe (II) concentrations decrease, suggesting buffering of Fe(II) by sulfide phases. / (cont.) Maximum concentrations of iron (II) and sulfide are 3 1 gM and 3 mM, respectively. Stability diagrams of magnetite and greigite within EH/pH space and measured voltammetric data verify fields of incomplete oxidation resulting in the production of elemental sulfur, thiosulfate and polysulfides. Calculations of the Gibbs free energy in the Salt Pond chemocline for potential microbial redox reaction involving iron and sulfur species indicate abundent potential energy available for metabolic growth. Oxidation of ferrous iron to ferrihydrite in the upper region of the chemocline consistantly has a yield of over -250 kJ/mol 02 (aq), - 12.5 times the proposed 20 kJ/mol minimum proposed by Schink (1997) necessary to sustain metabolic growth. This translates into biomass yields of ~ 0.056 mg dry mass per liter of upper chemocline water. If these numbers are applied to the dominant bacteria of the chemocline (MB that are 3% dry weight iron) then there could be up to ~ 1.68 mg of iron per liter of upper chemocline water just in the MB. / (cont.) This iron can be permanently sequestered by MB into the sediments after death because the organelles containing the iron phases are resistant to degredation. Geochemical and microbial processes relating to the cycling of iron heavily impact this system and perhaps others containing a chemocline that divides the water column into oxic and anoxic zones. / by Peter A. Canovas, III. / S.M.
323

The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of Plutonium, Neptunium, and Cesium

Kenna, Timothy C January 2002 (has links)
Thesis (Ph.D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2002. / Includes bibliographical references. / This thesis addresses the sources and transport of nuclear weapons related contamination in the Ob River region, Siberia. In addition to being one of the largest rivers flowing into the Arctic Ocean, the bulk of the former Soviet Union's nuclear fuel reprocessing and weapons testing facilities (i.e. Mayak, Tomsk-7, and Semipalitinsk) are located within the Ob drainage basin. The atom ratios 240Pu/239Pu, 237Np/239Pu, and 137Cs/240Pu, measured by magnetic-sector ICP-MS, are used to distinguish between contamination derived from global fallout and contamination derived from local sources. Deposition chronologies estimated for sediment cores are used to construct a record of weapons related contamination at the sites sampled. Contaminant records indicate that in addition to debris from atmospheric weapons tests, materials derived from local sources have also played a role in nuclear weapons related contamination of the Ob region. Isotopic data presented in this study clearly demonstrate that non-fallout contamination has been transported the full length of the Tobol, Irtysh, and Ob Rivers (i.e. the tributaries draining Mayak, Semipalitinsk, and Tomsk-7, respectively). In several instances, unique isotopic compositions are observed in sediments collected from tributaries draining each of the suspected non-fallout sources. In such cases, these materials and their deposition ages have been used to link contamination in the Ob delta to Mayak, Tomsk-7, or Semipalitinsk. Linear transport rate estimates (km yr-1) indicate that contaminated sediments transit between source tributaries and the Ob delta on time-scales of [less than or equal to] l year. / (cont.) These estimates suggest that a catastrophic release of contamination due to dam failure at one of the many reservoirs located at both Mayak and Tomsk-7 that contain high levels of radioactive waste would result in measurable levels of contamination in the delta within as little as 1 year. Isotopic concentrations in sequentially extracted sediments containing weapons related contamination reveal that the majority of plutonium and neptunium (80 to 90 percent) behaves in a similar fashion regardless of the source and is removed by treating the sediments with citrate-dithionite. This indicates that plutonium and neptunium are not truly refractory and likely associate with redox sensitive sedimentary components. Isotopic ratios measured in extracted fractions suggest that only a minor fraction of contamination is associated with acid leachable or acid digestible sedimentary phases. / by Timothy Cope Kenna. / Ph.D.
324

Atlantic Ocean circulation at the last glacial maximum : inferences from data and models

Dail, Holly Janine January 2012 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (p. 221-236). / This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO₂ concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of [delta]¹⁸O and [delta]¹³C compiled by Marchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein succesfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic [delta]¹⁸O and [delta]¹³C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded. / by Holly Janine Dail. / Ph.D.

Page generated in 0.0617 seconds