• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • Tagged with
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 80
  • 35
  • 19
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Ice shelf-ocean interactions in a general circulation model : melt-rate modulation due to mean flow and tidal currents

Dansereau, Véronique January 2012 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 121-123). / Interactions between the ocean circulation in sub-ice shelf cavities and the overlying ice shelf have received considerable attention in the context of observed changes in flow speeds of marine ice sheets around Antarctica. Modeling these interactions requires parameterizing the turbulent boundary layer processes to infer melt rates from the oceanic state at the ice-ocean interface. Here we explore two such parameterizations in the context of the MIT ocean general circulation model coupled to the z-coordinates ice shelf cavity model of Losch (2008). We investigate both idealized ice shelf cavity geometries as well as a realistic cavity under Pine Island Ice Shelf (PIIS), West Antarctica. Our starting point is a three-equation melt rate parameterization implemented by Losch (2008), which is based on the work of Hellmer and Olbers (1989). In this form, the transfer coefficients for calculating heat and freshwater fluxes are independent of frictional turbulence induced by the proximity of the moving ocean to the fixed ice interface. More recently, Holland and Jenkins (1999) have proposed a parameterization in which the transfer coefficients do depend on the ocean-induced turbulence and are directly coupled to the speed of currents in the ocean mixed layer underneath the ice shelf through a quadratic drag formulation and a bulk drag coefficient. The melt rate parameterization in the MITgcm is augmented to account for this velocity dependence. First, the effect of the augmented formulation is investigated in terms of its impact on melt rates as well as on its feedback on the wider sub-ice shelf circulation. We find that, over a wide range of drag coefficients, velocity-dependent melt rates are more strongly constrained by the distribution of mixed layer currents than by the temperature gradient between the shelf base and underlying ocean, as opposed to velocity-independent melt rates. This leads to large differences in melt rate patterns under PIIS when including versus not including the velocity dependence. In a second time, the modulating effects of tidal currents on melting at the base of PIIS are examined. We find that the temporal variability of velocity-dependent melt rates under tidal forcing is greater than that of velocity-independent melt rates. Our experiments suggest that because tidal currents under PIIS are weak and buoyancy fluxes are strong, tidal mixing is negligible and tidal rectification is restricted to very steep bathymetric features, such as the ice shelf front. Nonetheless, strong tidally-rectified currents at the ice shelf front significantly increase ablation rates there when the formulation of the transfer coefficients includes the velocity dependence. The enhanced melting then feedbacks positively on the rectified currents, which are susceptible to insulate the cavity interior from changes in open ocean conditions. / by Véronique Dansereau. / S.M.
22

Investigating the role of Trichodesmium spp. in the oceanic nitrogen cycle through observations and models

Olson, Elise Marie Black January 2014 (has links)
Thesis: Ph. D., Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2014. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 155-162). / This work concerns the nitrogen fixation and abundance of Trichodesmium colonies in the western subtropical-tropical North Atlantic and their connections with physical processes. Data were collected in fall 2010 and spring 2011, primarily using the Video Plankton Recorder (VPR). A data processing procedure for estimating the abundance of rare taxa was devised to take advantage of the accuracy of manual classification and the effort savings of automatic classification. The procedure entails selecting a subset of the original dataset, classifying it with automated software, and then manually correcting each classification. The method was validated through comparisons with fully classified VPR data and with abundance data based on microscopic enumeration on preserved samples. Correlations of Trichodesmium colony abundance with the eddy field emerged in two subsets of the VPR observations. In fall 2010, local maxima in abundance were observed in a series of cyclones. We hypothesized Ekman transport convergence/ divergence in cyclones/anticyclones as a driving mechanism. We investigated the process using idealized three-dimensional models of buoyant colonies in eddies. Elevated abundances in anticyclones in spring 2011 were correlated with anomalously fresh water, suggesting riverine input as a driver of the relationship. Finally, we evaluated the hypothesis of Davis and McGillicuddy (2006) that Trichodesmium nitrogen fixation in the North Atlantic may be underestimated by conventional sampling methods, based on their VPR observations of higher than expected colony abundances at depth in the subtropical North Atlantic. A bio-optical model was developed based on carbon-normalized nitrogen fixation rates measured in fall 2010 and spring 2011 and used to estimate nitrogen fixation over the VPR transects. Estimates of abundance and nitrogen fixation were similar in magnitude and vertical and geographical distribution to estimates compiled in a database by Luo et al. (2012). In the mean, VPR-based estimates of volume-specific nitrogen fixation rates at depth in the tropical North Atlantic were not inconsistent with estimates derived from conventional sampling methods. Based on this analysis, if Trichodesmium nitrogen fixation is underestimated, it is unlikely that it is attributable to underestimation of deep colony abundances due to mechanical disturbance during net-based sampling. / by Elise Marie Black Olson. / Ph. D.
23

Residual overturning circulation and its connection to Southern Ocean dynamics

Youngs, Madeleine Kendall. January 2020 (has links)
Thesis: Ph. D., Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2020 / Cataloged from student-submitted PDF of thesis. / Includes bibliographical references (pages 135-145). / Over the last 20 years, our understanding of the meridional overturning circulation has improved, but primarily in a two-dimensional, zonally-averaged framework. In this thesis, I have pushed beyond this simplification and shown that the additional complexity of meanders, storm tracks, and other zonal asymmetries is necessary to reproduce the lowest-order behavior of the overturning circulation. First I examined the role of basin width for determining whether the Atlantic or Pacific oceans experience deep convection. I used a two layered model and a rectangular single-basin model to show that the basin width, in combination with scalings for the overturning circulation make the overturning relatively weaker in the wider basin, priming it for a convection shut down. / In addition to this large-scale work, I have examined Southern Ocean-like meanders using a hierarchy of idealized models to understand the role of bottom topography in determining how the large-scale circulation responds to climate change scenarios. These are useful because they preserve the lowest-order behavior, while remaining simple enough to understand. I tested the response of the stratification and transport in the Southern Ocean to changes in wind using a highly-idealized two-layer quasi-geostrophic model. In addition to showing that meanders are necessary to reproduce the behavior of the Southern Ocean, I found that strong winds concentrate the baroclinic and barotropic instabilities downstream of the bottom topography and weaken the instabilities elsewhere due to a form-drag process. With weak winds, however, the system is essentially symmetric in longitude, like a flat-bottomed ocean. / This result is consistent with observations of elevated turbulence down-stream of major topography in the Southern Ocean. My next study investigated a more realistic Southern Ocean-like channel, with and without bottom topography, and examined the three-dimensional circulation in order to understand where vertical transport occurs and develop a picture of the pathways taken by each individual water parcel. I found that the vertical transport happens in very isolated locations, just downstream of topography. Finally, I added a biogeochemical model to my simulations and found that carbon fluxes are enhanced near topography, again highlighting the role of zonal asymmetries. / by Madeleine Kendall Youngs. / Ph. D. / Ph.D. Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)
24

Estimating atmospheric boundary layer turbulence in the marine environment using lidar systems with applications for offshore wind energy

Gurumurthy, Praneeth. January 2021 (has links)
Thesis: S.M., Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February, 2021 / Cataloged from the official PDF of thesis. / Includes bibliographical references (pages 81-85). / Estimating turbulence in the marine-atmospheric boundary layer is critical to many industrial, commercial and scientific fields, but of particular importance to the wind energy industry. Contributing to both the efficiency of energy extraction and the life-cycle cost of the turbine itself, turbulence in the atmospheric boundary layer is estimated within the wind energy industry as Turbulence Intensity (TI) and more recently by Turbulent Kinetic Energy (TKE). Traditional in-situ methods to measure turbulence are extremely difficult to deploy in the marine environment, resulting in a recent movement to and dependence on remote sensing methods. One type of remote sensing instrument, Doppler lidars, have shown to reliably estimate the wind speed and atmospheric turbulence while being cost effective and easily deployable, and hence are being increasingly utilized as a standard for wind energy assessments. / In this thesis, the ability of lidars to measure turbulence up to a height of 200 m above mean sea level in the marine-atmospheric boundary layer was tested using a 7-month data set spanning winter to early summer. Lidar-based TI and TKE were estimated by three methods using observations from a highly validated lidar system and compared under both convective and stable atmospheric stability conditions. Convective periods were found to have higher turbulence at all the heights compared to stable conditions, while mean wind speed and shear were higher during stable conditions. The study period was characterized by generally low turbulent conditions with high turbulence events occurring at timescales of a few days. Mean vertical profiles of TKE were non-uniformly distributed in height during low turbulent conditions. During highly turbulent events, TKE increased more strongly with height. The definition of TI--following the industry or meteorology conventions -- / had no real effect on the results, and differences between cup or sonic anemometers and lidar TI values were small except at low wind speeds. All the three lidar-based TKE methods tested corresponded closely to independent estimates, and differences between the methods were small relative to the temporal variability of TKE observed at the offshore site. / by Praneeth Gurumurthy. / S.M. / S.M. Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution)
25

The southern ocean meridional overturning circulation as diagnosed from an eddy permitting state estimate

Mazloff, Matthew R January 2008 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references (p. 115-127). / A modern general circulation model of the Southern Ocean with one-sixth of a degree resolution is optimized to the observed ocean in a weighted least squares sense. Convergence to the state estimate solution is carried out by systematically adjusting the control variables (atmospheric state and initial conditions) using the adjoint model. A cost function compares the model state to in situ observations (Argo float profiles, CTD synoptic sections, SEaOS instrument mounted seal profiles, and XBTs), altimetric observations (ENVISAT, GEOSAT, Jason, TOPEX/Poseidon), and other data sets (e.g. infrared and microwave radiometer observed sea surface temperature and NSIDC sea-ice concentration). Costs attributed to control variable perturbations ensure a physically realistic solution. The state estimate is found to be largely consistent with the individual observations, as well as with integrated fluxes inferred from previous static inverse models. The transformed Eulerian mean formulation is an elegant way to theorize about the Southern Ocean. Current researchers utilizing this framework, however, have been making assumptions that render their theories largely irrelevant to the actual ocean. It is shown that theories of the overturning circulation must include the effect of pressure forcing. This is true in the most buoyant waters, where pressure forcing overcomes eddy and wind forcing to balance a poleward geostrophic transport and allows the buoyancy budget to be closed. Pressure forcing is also lowest order at depth. Indeed, the Southern Ocean's characteristic multiple cell overturning is primarily in geostrophic balance. Several other aspects of the Southern Ocean circulation are also investigated in the thesis, including an analysis of the magnitude and variability of heat, salt, and volume inter-basin transports. / by Matthew R. Mazloff. / Ph.D.
26

Linear and nonlinear Rossby waves in basins both with and without a thin meridional barrier

Atherton, Juli January 2002 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2002. / Includes bibliographical references (leaf 119). / The linear and nonlinear Rossby wave solutions are examined in homogeneous square basins on the [beta]-plane both with and without a thin meridional barrier. In the presence of the meridional barrier the basin is almost partitioned into two; only two small gaps of equal width, d, to the north and south of the barrier allow communication between the eastern and western sub-basins. Solutions are forced by a steady periodic wind forcing applied over a meridional strip near the eastern side. Bottom friction is present to allow the solutions to reach equilibrium. The linear solution for the basin containing the barrier is determined analytically and the nonlinear solutions for both basins are found numerically. In the linear solution with the barrier present, particular attention was paid to the resonant solutions. We examined the effects of varying the symmetry of the forcing about the mid-latitude, the frequency of the periodic forcing and the strength of the bottom friction. For each solution we focus on how the no net circulation condition, which is central to any solution in a barrier basin, is satisfied. The nonlinear solutions were studied for both basin configurations. In each case the transition from the weakly nonlinear solution to the turbulent solution was examined, as the forcing frequency and forcing strength were varied. Only integer multiples of the forcing frequency are present in the weakly nonlinear solutions. The turbulent solutions were accompanied by the appearance of many other frequencies whose exact origins are unknown, but are probably the result of instabilities. A hysteresis was found for the turbulent solutions of both the barrier-free and barrier basins. In the weakly nonlinear solutions of the barrier basin it was predicted and confirmed that there is never a steady net flow from sub-basin to sub-basin. It was also shown that with a symmetric forcing all modes oscillating with an odd multiple of the forcing frequency are symmetric and all modes oscillating with even multiples of the forcing frequency are antisymmetric. / by Juli Atherton. / S.M.
27

On the role of topography and of boundary forcing in the ocean circulation

Cessi, Paola January 1987 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1987. / Includes bibliographies. / by Paola Cessi. / Ph.D.
28

Adaptive error estimation in linearized ocean general circulation models

Chechelnitsky, Michael Y. (Michael Yurievich), 1972- January 1999 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references (p. 206-211). / Data assimilation methods, such as the Kalman filter, are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. In this study we address the problem of estimating model and measurement error statistics from observations. We start by testing the Myers and Tapley (1976, MT) method of adaptive error estimation with low-dimensional models. We then apply the MT method in the North Pacific (5°-60° N, 132°-252° E) to TOPEX/POSEIDON sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The MT method, closely related to the maximum likelihood methods of Belanger (1974) and Dee (1995), is shown to be sensitive to the initial guess for the error statistics and the type of observations. It does not provide information about the uncertainty of the estimates nor does it provide information about which structures of the error statistics can be estimated and which cannot. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). The CMA is both a powerful diagnostic tool for addressing theoretical questions and an efficient estimator for real data assimilation studies. It can be extended to estimate other statistics of the errors, trends, annual cycles, etc. Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. After removal of trends and annual cycles, the low frequency /wavenumber (periods> 2 months, wavelengths> 16°) TOPEX/POSEIDON sea level anomaly is of the order 6 cm2. The GCM explains about 40% of that variance. By covariance matching, it is estimated that 60% of the GCM-TOPEX/POSEIDON residual variance is consistent with the reduced state linear model. The CMA is then applied to TOPEX/POSEIDON sea level anomaly data and a linearization of a global GFDL GCM. The linearization, done in Fukumori et al.(1999), uses two vertical mode, the barotropic and the first baroclinic modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCMTOPEX/ POSEIDON residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the TIP signal, which are not part of the 20 by 10 GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simultaneous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers. / by Michael Y. Chechelnitsky. / Ph.D.
29

Wind-driven circulation on a shallow, stratified shelf

Austin, Jay Alan January 1999 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 1999. / Includes bibliographical references (leaves 235-243). / A detailed examination of the development of a deep convection event observed in the Greenland Sea in 1988-89 is carried out through a combination of modeling, scale estimates, and data analysis. We develop a prognostic one-dimensional mixed layer model which is coupled to a thermodynamic ice model. Our model contains a representation of the lowest order boundary layer dynamics and adjustable coupling strengths between the mixed layer, ice, and atmosphere. We find that the model evolution is not very sensitive to the strength of the coupling between the ice and the mixed layer sufficiently far away from the limits of zero and infinite coupling; we interpret this result in physical terms. Further, we derive an analytical expression which provides a scale estimate of the rate of salinification of the mixed layer during the ice-covered preconditioning period as a function of the rate of ice advection. / by Jay Alan Austin. / Ph.D.
30

Dynamics of global ocean heat transport variability

Jayne, Steven Robert January 1999 (has links)
Thesis (Sc. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references (p. 161-169). / A state-of-the-art, high-resolution ocean general circulation model is used to estimate the time-dependent global ocean heat transport and investigate its dynamics. The north-south heat transport is the prime manifestation of the ocean's role in global climate, but understanding of its variability has been fragmentary owing to uncertainties in observational analyses, limitations in models, and the lack of a convincing mechanism. These issues are addressed in this thesis. Technical problems associated with the forcing and sampling of the model, and the impact of high-frequency motions are discussed. Numerical schemes are suggested to remove the inertial energy to prevent aliasing when the model fields are stored for later analysis. Globally, the cross-equatorial, seasonal heat transport fluctuations are close to +4.5 x 1015 watts, the same amplitude as the seasonal, cross-equatorial atmospheric energy transport. The variability is concentrated within 200 of the equator and dominated by the annual cycle. The majority of it is due to wind-induced current fluctuations in which the time-varying wind drives Ekman layer mass transports that are compensated by depth-independent return flows. The temperature difference between the mass transports gives rise to the time-dependent heat transport. The rectified eddy heat transport is calculated from the model. It is weak in the central gyres, and strong in the western boundary currents, the Antarctic Circumpolar Current, and the equatorial region. It is largely confined to the upper 1000 meters of the ocean. The rotational component of the eddy heat transport is strong in the oceanic jets, while the divergent component is strongest in the equatorial region and Antarctic Circumpolar Current. The method of estimating the eddy heat transport from an eddy diffusivity derived from mixing length arguments and altimetry data, and the climatological temperature field, is tested and shown not to reproduce the model's directly evaluated eddy heat transport. Possible reasons for the discrepancy are explored. / by Steven Robert Jayne. / Sc.D.

Page generated in 0.1064 seconds