• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Joint spectral radius : theory and approximations

Theys, Jacques 30 May 2005 (has links)
The spectral radius of a matrix is a widely used concept in linear algebra. It expresses the asymptotic growth rate of successive powers of the matrix. This concept can be extended to sets of matrices, leading to the notion of "joint spectral radius". The joint spectral radius of a set of matrices was defined in the 1960's, but has only been used extensively since the 1990's. This concept is useful to study the behavior of multi-agent systems, to determine the continuity of wavelet basis functions or for expressing the capacity of binary codes. Although the joint spectral radius shares some properties with the usual spectral radius, it is much harder to compute, and the problem of approximating it is NP-hard. In this thesis, we first review theoretical results that lead to basic approximations of the joint spectral radius. Then, we list various specific cases where it is effectively computable, before presenting a specific type of sets of matrices, for which we solve the problem of computing it with a polynomial computational cost.
2

Infinite matrix products : from the joint spectral radius to combinatorics

Jungers, Raphaël 10 June 2008 (has links)
This thesis is devoted to the analysis of problems that arise when long products of matrices taken in a given set are constructed. A typical application is the stability of switched linear systems. The stability of a discrete-time linear system is a classical engineering problem that has been well understood for long: the dynamics can be expressed in terms of the eigenvalues of the matrix ruling the system. A more complicated problem arises when the dynamical system can switch, that is, if the matrix changes over time. If this matrix is taken from a given set but can be chosen arbitrarily in this set at every time, the stability problem turns to the computation of a quantity, the joint spectral radius of the set of matrices, introduced in the early sixties. While this quantity appears to be hard to compute, it has acquired more and more importance during the last decades, and new applications of the joint spectral radius in engineering or mathematics are frequently discovered. It has for instance been proved useful for the analysis of regularity of fractals, for the continuity of wavelets, or for autonomous agents detection in sensor networks. In the first part of this thesis, we present a theoretical survey of the joint spectral radius, including old and new results. The joint spectral subradius, which is its stabilizability counterpart, is also considered. In a second part, we study some applications related to long products of matrices. We first analyse in detail a problem in coding theory, that has been recently shown to involve a joint spectral radius computation. We then propose a new application of the joint spectral radius (and related quantities) to a classical problem in number theory, namely the counting of overlap-free words. We then turn to problems related with autonomous agents detection: we analyse the trackability of sensor networks, and introduce and analyse a new notion, namely the observability of sensor networks.
3

Joint Spectrum and Large Deviation Principles for Random Products of Matrices / Spectre joint et principes de grandes déviations pour les produits aléatoires des matrices

Sert, Cagri 01 December 2016 (has links)
Après une introduction générale et la présentation d'un exemple explicite dans le chapitre 1, nous exposons certains outils et techniques généraux dans le chapitre 2.- dans le chapitre 3, nous démontrons l'existence d'un principe de grandes déviations (PGD) pour les composantes de Cartan le long des marches aléatoires sur les groupes linéaires semi -simples G. L'hypothèse principale porte sur le support S de la mesure de la probabilité en question et demande que S engendre un semi-groupe Zariski dense. - Dans le chapitre 4, nous introduisons un objet limite (une partie de la chambre de Weyl) que l'on associe à une partie bornée S de G et que nous appelons le spectre joint J(S) de S. Nous étudions ses propriétés et démontrons que J(S) est une partie convexe compacte d'intérieur non-vide dès que S engendre un semi -groupe Zariski dense. Nous relions le spectre joint avec la notion classique du rayon spectral joint et la fonction de taux du PGD pour les marches aléatoires. - Dans le chapitre 5, nous introduisons une fonction de comptage exponentiel pour un S fini dans G, nous étudions ses propriétés que nous relions avec J(S) et démontrons un théorème de croissance exponentielle dense. - Dans le chapitre 6, nous démontrons le PGD pour les composantes d'Iwasawa le long des marches aléatoires sur G. L'hypothèse principale demande l'absolue continuité de la mesure de probabilité par rapport à la mesure de Haar.- Dans le chapitre 7, nous développons des outils pour aborder une question de Breuillard sur la rigidité du rayon spectral d'une marche aléatoire sur le groupe libre. Nous y démontrons un résultat de rigidité géométrique. / After giving a detailed introduction andthe presentation of an explicit example to illustrateour study in Chapter 1, we exhibit some general toolsand techniques in Chapter 2. Subsequently,- In Chapter 3, we prove the existence of a large deviationprinciple (LDP) with a convex rate function, forthe Cartan components of the random walks on linearsemisimple groups G. The main hypothesis is onthe support S of the probability measure in question,and asks S to generate a Zariski dense semigroup.- In Chapter 4, we introduce a limit object (a subsetof the Weyl chamber) that we associate to a boundedsubset S of G. We call this the joint spectrum J(S)of S. We study its properties and show that for asubset S generating a Zariski dense semigroup, J(S)is convex body, i.e. a convex compact subset of nonemptyinterior. We relate the joint spectrum withthe classical notion of joint spectral radius and therate function of LDP for random walks on G.- In Chapter 5, we introduce an exponential countingfunction for a nite S in G. We study its properties,relate it to joint spectrum of S and prove a denseexponential growth theorem.- In Chapter 6, we prove the existence of an LDPfor Iwasawa components of random walks on G. Thehypothesis asks for a condition of absolute continuityof the probability measure with respect to the Haarmeasure.- In Chapter 7, we develop some tools to tackle aquestion of Breuillard on the rigidity of spectral radiusof a random walk on a free group. We prove aweaker geometric rigidity result.

Page generated in 0.0894 seconds