• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamique des jonctions SNS diffusives

Spahr, Kevin January 2014 (has links)
Le but de ce projet de maîtrise est d’explorer la dynamique des jonctions Supraconducteur/métal Normal/Supraconducteur (SNS) diffusives dans un régime de fréquence de l’ordre du temps électron-phonon, soit l’échelle de temps sur laquelle un électron diffuse sur les phonons. Les jonctions utilisées possèdent des bornes en niobium tandis que le métal normal est de l’aluminium. Les mesures sont réalisées à des températures supérieures à 1.4 K, soit au-dessus de la température critique de l’aluminium (1.20 K) et largement en dessous de celle du niobium (9.26 K). On étudie ces jonctions en mesurant leurs caractéristiques courant-tension lorsqu’elles sont excitées avec un signal radio-fréquence (rf). Pour une demi-période d’excitation sinusoïdale (demi-cycle), on observe deux possibilités : soit la jonction reste dans l’état supraconducteur, soit elle transite vers l’état normal. En variant la fréquence et l’amplitude de l’excitation, on relève la statistique de ces transitions. On met ainsi en évidence des changements dans le comportement dynamique de la jonction lorsqu’on varie les paramètres de l’excitation. Si l’on fixe la fréquence d’excitation à une valeur suffisamment basse et qu’on augmente progressivement l’amplitude de cette excitation, on observe une variation graduelle du pourcentage de cycles (ou demi-cycles) d’excitation sinusoïdale où la jonction transite de l’état supraconducteur à l’état normal. Pour les très basses fréquences, cette variation se fait sur un intervalle d’amplitude d’excitation qui coïncide avec la largeur de la distribution du courant critique de la jonction. En augmentant la fréquence d’excitation, cette variation est de plus en plus abrupte et devient un saut discontinu au-delà d’une fréquence critique [florin]*. Ce saut discontinu à haute fréquence s’accompagne d’une hystérèse. Pour un régime de fréquence intermédiaire, les cycles présentant une transition vers l’état normal se regroupent dans le temps et forment des blocs de transitions vers l’état normal. On a montré que la durée moyenne de ces regroupements croît exponentiellement avec la fréquence. Par exemple, pour une température de 1.4 K, la durée moyenne de ces regroupements peut varier de sept ordres de grandeur sur la plage de radio-fréquence étudiée. Enfin, ces comportements dynamiques sont fortement dépendants de la température. En caractérisant ces changements de comportement en fonction des divers paramètres d’excitation et de la température, on met en évidence que le bruit thermique associé au bain de phonons fait partie intégrante du mécanisme causant les regroupements dans le régime de fréquence intermédiaire. À suffisamment basse fréquence (ou à toutes les fréquences dans l’approximation que la dynamique n’affecte pas le « bain »), la caractérisation de ce régime transitoire constitue en soi une « mesure » de l’occurrence d’événements rares, ici les fluctuations thermiques menant la jonction à transiter vers l’état normal.
2

Dynamique des jonctions SNS diffusives

Spahr, Kevin January 2014 (has links)
Le but de ce projet de maîtrise est d’explorer la dynamique des jonctions Supraconducteur/métal Normal/Supraconducteur (SNS) diffusives dans un régime de fréquence de l’ordre du temps électron-phonon, soit l’échelle de temps sur laquelle un électron diffuse sur les phonons. Les jonctions utilisées possèdent des bornes en niobium tandis que le métal normal est de l’aluminium. Les mesures sont réalisées à des températures supérieures à 1.4 K, soit au-dessus de la température critique de l’aluminium (1.20 K) et largement en dessous de celle du niobium (9.26 K). On étudie ces jonctions en mesurant leurs caractéristiques courant-tension lorsqu’elles sont excitées avec un signal radio-fréquence (rf). Pour une demi-période d’excitation sinusoïdale (demi-cycle), on observe deux possibilités : soit la jonction reste dans l’état supraconducteur, soit elle transite vers l’état normal. En variant la fréquence et l’amplitude de l’excitation, on relève la statistique de ces transitions. On met ainsi en évidence des changements dans le comportement dynamique de la jonction lorsqu’on varie les paramètres de l’excitation. Si l’on fixe la fréquence d’excitation à une valeur suffisamment basse et qu’on augmente progressivement l’amplitude de cette excitation, on observe une variation graduelle du pourcentage de cycles (ou demi-cycles) d’excitation sinusoïdale où la jonction transite de l’état supraconducteur à l’état normal. Pour les très basses fréquences, cette variation se fait sur un intervalle d’amplitude d’excitation qui coïncide avec la largeur de la distribution du courant critique de la jonction. En augmentant la fréquence d’excitation, cette variation est de plus en plus abrupte et devient un saut discontinu au-delà d’une fréquence critique [florin]*. Ce saut discontinu à haute fréquence s’accompagne d’une hystérèse. Pour un régime de fréquence intermédiaire, les cycles présentant une transition vers l’état normal se regroupent dans le temps et forment des blocs de transitions vers l’état normal. On a montré que la durée moyenne de ces regroupements croît exponentiellement avec la fréquence. Par exemple, pour une température de 1.4 K, la durée moyenne de ces regroupements peut varier de sept ordres de grandeur sur la plage de radio-fréquence étudiée. Enfin, ces comportements dynamiques sont fortement dépendants de la température. En caractérisant ces changements de comportement en fonction des divers paramètres d’excitation et de la température, on met en évidence que le bruit thermique associé au bain de phonons fait partie intégrante du mécanisme causant les regroupements dans le régime de fréquence intermédiaire. À suffisamment basse fréquence (ou à toutes les fréquences dans l’approximation que la dynamique n’affecte pas le « bain »), la caractérisation de ce régime transitoire constitue en soi une « mesure » de l’occurrence d’événements rares, ici les fluctuations thermiques menant la jonction à transiter vers l’état normal.
3

Dynamics of Andeev states in a normal metal-superconductor ring : supercurrent fluctuations and spectroscopy of the minigap / Dynamique des états d'Andreev dans un anneau hybride métal normal-supraconducteur : fluctuations du supercourant et spectroscopie du minigap

Dassonneville, Bastien 13 January 2014 (has links)
Une jonction SNS composée de deux supraconducteurs (S) séparés par un métal normal (N) est parcourue par un courant non-dissipatif dont l'amplitude dépend de la différence de phase entre les deux supraconducteurs. Les propriétés à l'équilibre de ce système ont été récemment explorées et sont aujourd’hui bien comprises. La dynamique des jonctions SNS est toutefois une question plus complexe : on peut par exemple se demander comment évolue la relation courant-phase avec une polarisation en phase à haute fréquence. Quels sont les temps caractéristiques et les mécanismes qui régissent cette évolution ? Pour sonder les propriétés des états d’Andreev et en particulier leur dynamique, nous avons mesuré la réponse d’un anneau NS polarisé en phase $ \varphi $. La réponse du courant à une excitation en phase à des fréquences $ f $ allant de 200 MHz à 14 Ghz donne accès à la susceptibilité magnétique $ \chi(\varphi,f) $ dont la partie réelle $ \chi' $ renseigne sur la réponse non-dissipative et la partie imaginaire $ \chi'' $ informe sur la dissipation. La susceptibilité est obtenue en mesurant la modification des modes propres d'un résonateur supraconducteur auquel est couplé l'anneau.De manière attendue, $ \chi' $ est simplement la dérivée en phase du supercourant à basse fréquence, révélant ainsi la relation courant-phase. Fait plus surprenant, nous avons observé l'émergence de deux contributions à plus haute fréquence. La première est reliée à la relaxation des populations mises hors-équilibre par l'excitation. Elle est associée à un bruit de supercourant. La seconde contribution correspond à des transitions induites. D'après notre analyse de l'expérience, sa dépendance en phase s'explique en prenant en compte des règles de sélection. Elle devrait également permettre de réaliser la spectroscopie du minigap. Ces résultats montrent que de telles mesures à fréquence finie révèlent des propriétés des jonctions SNS inaccessibles par des expériences de transport standards. / A SNS junction made of two superconducting (S) electrodes separated by a normal (N) metal carries a non-dissipative current whose amplitude depends on the phase difference between the superconductors. The equilibrium properties of this system have been recently explored and are now well understood. The dynamics is still an open question: how does the current-phase relation evolves with a high-frequency phase modulation? What are the mechanisms and characteristic times that govern this evolution?To probe the dynamics of Andreev states, we measured the response of a phase($ \varphi $)-biased NS ring. The current response at frequencies $ f $ ranging from 200 MHz up to 14 GHz yields the magnetic susceptibility $ \chi(\varphi,f) $ whose real part $ \chi' $ gives the the non-dissipative response while the imaginary part $ \chi'' $ reveals the dissipation. Susceptibility is accessed by the modification of a superconducting resonator coupled to the NS ring.As expected, $ \chi' $ is simply the phase derivative of the supercurrent at low frequency, thus revealing the current-phase relation. More strikingly, we observed the emergence of two contributions at high-frequency. The first one is related to the relaxation of populations driven out-of-equilibrium by the excitation. It is associated with supercurrent noise. The second one corresponds to induced transitions. According to our analysis of the experiment, its phase dependence is accounting for by taking into account selection rules. It should also allows to perform the minigap spectroscopy. These results show that such finite frequency measurements reveal properties of SNS junctions that can not be accessed by standard transport experiments.

Page generated in 0.0811 seconds