• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatial and temporal variations in the petrology, morphology and tectonics of a migrating spreading center : the Endeavour Segment, Juan de Fuca Ridge /

Karsten, Jill Leslie. January 1988 (has links)
Thesis (Ph. D.)--University of Washington, 1988. / Vita. Bibliography: leaves [264]-290.
2

High resolution seismic refraction study of the uppermost oceanic crust near the Juan De Fuca Ridge

Poujol, Michel 11 June 1987 (has links)
Graduation date: 1988
3

Isotope geochemistry of basaltic glasses from the Vance Seamounts, a near-ridge seamount chain adjacent to the Juan de Fuca Ridge /

Cornejo, Elizabeth Anne, January 1900 (has links)
Thesis (M. Sc.)--Carleton University, 2008. / Includes bibliographical references (p. 157-168). Also available in electronic format on the Internet.
4

The crustal structure of the northern Juan de Fuca plate from multichannel seismic reflection data

Hasselgren, Elizabeth January 1991 (has links)
The crustal structure of a young (<10 My) ocean basin is imaged by two multichannel seismic reflection lines comprising 230 km recorded over the central part of the northern Juan de Fuca plate off western Canada. The more northerly line ties previously interpreted deep seismic reflection lines across the Juan de Fuca ridge and the Cascadia subduction zone; the southern line ties with another interpreted line across the subduction zone. Both lines trend obliquely to the spreading direction. A marine refraction profile crossing the eastern end of the lines provides velocity constraints. The processing sequence applied to the data includes a prestack inside-trace mute of CMP gathers to reduce noise levels on the deep data, CMP stack, post-stack dip filtering, f-k migration and bandpass. Coherency-filtered stacks are helpful in tracing weaker reflectors. The stacked sections reveal a horizontally layered sedimentary sequence overlying a rugged and prominent basement reflector dipping slightly landward. A strong, fairly continuous reflection from the base of the crust at about 2 s two-way-time below the basement surface generally mimics the basement topography and shows the characteristic doubling and tripling of reflections seen in other similar surveys. Although in general the crust appears acoustically transparent, weaker, discontinuous intracrustal reflectors are observed over 40 km at the eastern end of the northern line, and are interpreted to arise from the oceanic Layer 3A/3B and Layer 2/3 boundaries. The im-persistence of these reflectors is an indication of the complexity of the processes producing intracrustal reflectivity, and an indication of the lateral variability of crustal formation. Pseudofault traces of propagating rifts are crossed at three different locations on the two lines, the first MCS crossings of such structures. Crust associated with the pseudofault traces is related to both subhorizontal and dipping subcrustal events which are interpreted as zones of crustal thickening or underplating. Although the crustal thickness elsewhere on the lines varies by only about 10%, crust associated with the pseudofaults is as much as about 25% thicker than average, suggesting that magma supply at transform-type offsets may at times be large. A small seamount discovered on the southern line may result from the excessive magma production at the ridge postulated at propagating rift zones. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
5

A re-evaluation of the seismic structure across the active subduction zone of Western Canada

Drew, Jeffrey John January 1987 (has links)
The 1980 Vancouver Island Seismic Project (VISP) was conducted to investigate lithospheric structure associated with the underthrusting oceanic Juan de Fuca plate and the overriding continental America plate. The principal components of the survey were: (l) an onshore-offshore refraction line, which was approximately perpendicular to the continental margin (line 1), and (2) a refraction line which ran along the length of Vancouver Island approximately parallel with the continental margin (line IV). Lines I and IV were originally interpreted by Spence el a.1. (1985) and McMechan and Spence (1983), respectively. However since the original interpretations of these lines, deep multichannel seismic reflection data have been obtained on southern Vancouver Island as part of the 1984 LITHOPROBE project and off the west coast of the island during a marine survey in 1985. This study was undertaken to resolve differences between the subsurface structures proposed in the original interpretations of lines I and IV and those suggested by the more recently acquired deep reflection data. The vertical two-way traveltimes to prominent reflectors, observed in the onshore-offshore deep reflection data, were used as a constraint in constructing velocity models which are consistent with both the reflection and refraction data. The traveltimes and amplitudes observed in the VISP refraction data were modeled using a two-dimensional raytracing and asymptotic ray theory synthetic seismogram routine. The principal difference between the model originally interpreted for line I and the revised model involves the introduction of a twice repeated sequence of a low velocity zone (≈ 6.4 km/s) above a thicker high velocity zone (≈ 7.1 km/s) for the underplated region directly above the subducting Juan de Fuca plate in place of the single high velocity block underlain by a thick low velocity zone. The revised model for line IV is significantly different from the originally interpreted model. The two low-high velocity zones of line 1 are continued along the length of the island at depths between 10 and 35 km. Below this, the structure of the subducted plate is included to maintain consistency with the revised model developed for line 1. Additional features of the revised onshore-offshore model corresponding to line 1 include an oceanic lithosphere that dips approximately 3° beneath the continental slope, then 14° to 16° beneath the continental shelf and Vancouver Island, and an average velocity for the upper oceanic mantle of 8.22 km/s. Two separate two-dimensional models were needed to explain the data collected along line IV as a result of considerable azimuthal coverage due to a 30° change in profile direction. The revised models developed for line IV are consistent with the revised model developed for line 1. The velocity in the upper 10 km ranges from 5.5 km/s to approximately 6.7 km/s. Below 10 km the velocity structure is consistent with that interpreted for line 1 and shows some variations along strike of the subduction zone. Several possible interpretations can be made for the origin of the sequence of layers directly above the subducting plate beneath Vancouver Island. The two favored interpretations are: (1) a. three stage tectonic process consisting of: stage 1 — offscraping of sediment from the top of the subducting plate forms the uppermost low velocity layer in the sequence; stage 2 — an imbricated package of mafic rocks derived by continuous accretion from the top of the subducting oceanic crust forms the first high velocity layer; and stage 3 — stages 1 and 2 repeat themselves with stage 2 currently occurring; or (2) remnant, pieces of oceanic lithosphere left stranded above the current subducting plate during two previous episodes of subduction in which the subduction thrust jumped further westward isolating the remnant. The revised model along line IV indicates that this process of subduction underplating could have been a pervasive feature of this convergent margin. / Science, Faculty of / Physics and Astronomy, Department of / Graduate

Page generated in 0.1768 seconds