• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 15
  • 11
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 90
  • 90
  • 37
  • 26
  • 26
  • 23
  • 21
  • 19
  • 15
  • 15
  • 15
  • 15
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Option pricing under exponential jump diffusion processes

Bu, Tianren January 2018 (has links)
The main contribution of this thesis is to derive the properties and present a closed from solution of the exotic options under some specific types of Levy processes, such as American put options, American call options, British put options, British call options and American knock-out put options under either double exponential jump-diffusion processes or one-sided exponential jump-diffusion processes. Compared to the geometric Brownian motion, exponential jump-diffusion processes can better incorporate the asymmetric leptokurtic features and the volatility smile observed from the market. Pricing the option with early exercise feature is the optimal stopping problem to determine the optimal stopping time to maximize the expected options payoff. Due to the Markovian structure of the underlying process, the optimal stopping problem is related to the free-boundary problem consisting of an integral differential equation and suitable boundary conditions. By the local time-space formula for semi-martingales, the closed form solution for the options value can be derived from the free-boundary problem and we characterize the optimal stopping boundary as the unique solution to a nonlinear integral equation arising from the early exercise premium (EEP) representation. Chapter 2 and Chapter 3 discuss American put options and American call options respectively. When pricing options with early exercise feature under the double exponential jump-diffusion processes, a non-local integral term will be found in the infinitesimal generator of the underlying process. By the local time-space formula for semi-martingales, we show that the value function and the optimal stopping boundary are the unique solution pair to the system of two integral equations. The significant contributions of these two chapters are to prove the uniqueness of the value function and the optimal stopping boundary under less restrictive assumptions compared to previous literatures. In the degenerate case with only one-sided jumps, we find that the results are in line with the geometric Brownian motion models, which extends the analytical tractability of the Black-Scholes analysis to alternative models with jumps. In Chapter 4 and Chapter 5, we examine the British payoff mechanism under one-sided exponential jump-diffusion processes, which is the first analysis of British options for process with jumps. We show that the optimal stopping boundaries of British put options with only negative jumps or British call options with only positive jumps can also be characterized as the unique solution to a nonlinear integral equation arising from the early exercise premium representation. Chapter 6 provides the study of American knock-out put options under negative exponential jump-diffusion processes. The conditional memoryless property of the exponential distribution enables us to obtain an analytical form of the arbitrage-free price for American knock-out put options, which is usually more difficult for many other jump-diffusion models.
12

Pricing and hedging S&P 500 index options : a comparison of affine jump diffusion models

Gleeson, Cameron, Banking & Finance, Australian School of Business, UNSW January 2005 (has links)
This thesis examines the empirical performance of four Affine Jump Diffusion models in pricing and hedging S&P 500 Index options: the Black Scholes (BS) model, Heston???s Stochastic Volatility (SV) model, a Stochastic Volatility Price Jump (SVJ) model and a Stochastic Volatility Price-Volatility Jump (SVJJ) model. The SVJJ model structure allows for simultaneous jumps in price and volatility processes, with correlated jump size distributions. To the best of our knowledge this is the first empirical study to test the hedging performance of the SVJJ model. As part of our research we derive the SVJJ model minimum variance hedge ratio. We find the SVJ model displays the best price prediction. The SV model lacks the structural complexity to eliminate Black Scholes pricing biases, whereas our results indicate the SVJJ model suffers from overfitting. Despite significant evidence from in and out-of-sample pricing that the SV and SVJ models were better specified than the BS model, this did not result in an improvement in dynamic hedging performance. Overall the BS delta hedge and SV minimum variance hedge produced the lowest errors, although their performance across moneyness-maturity categories differed greatly. The SVJ model???s results were surprisingly poor given its superior performance in out-of-sample pricing. We attribute the inadequate performance of the jump models to the lower hedging ratios these models provided, which may be a result of the negative expected jump sizes.
13

Incorporating discontinuities in value-at-risk via the poisson jump diffusion model and variance gamma model

Lee, Brendan Chee-Seng, Banking & Finance, Australian School of Business, UNSW January 2007 (has links)
We utilise several asset pricing models that allow for discontinuities in the returns and volatility time series in order to obtain estimates of Value-at-Risk (VaR). The first class of model that we use mixes a continuous diffusion process with discrete jumps at random points in time (Poisson Jump Diffusion Model). We also apply a purely discontinuous model that does not contain any continuous component at all in the underlying distribution (Variance Gamma Model). These models have been shown to have some success in capturing certain characteristics of return distributions, a few being leptokurtosis and skewness. Calibrating these models onto the returns of an index of Australian stocks (All Ordinaries Index), we then use the resulting parameters to obtain daily estimates of VaR. In order to obtain the VaR estimates for the Poisson Jump Diffusion Model and the Variance Gamma Model, we introduce the use of an innovation from option pricing techniques, which concentrates on the more tractable characteristic functions of the models. Having then obtained a series of VaR estimates, we then apply a variety of criteria to assess how each model performs and also evaluate these models against the traditional approaches to calculating VaR, such as that suggested by J.P. Morgan???s RiskMetrics. Our results show that whilst the Poisson Jump Diffusion model proved the most accurate at the 95% VaR level, neither the Poisson Jump Diffusion or Variance Gamma models were dominant in the other performance criteria examined. Overall, no model was clearly superior according to all the performance criteria analysed, and it seems that the extra computational time required to calibrate the Poisson Jump Diffusion and Variance Gamma models for the purposes of VaR estimation do not provide sufficient reward for the additional effort than that currently employed by Riskmetrics.
14

Linear and Non-linear Monotone Methods for Valuing Financial Options Under Two-Factor, Jump-Diffusion Models

Clift, Simon Sivyer January 2007 (has links)
The evolution of the price of two financial assets may be modeled by correlated geometric Brownian motion with additional, independent, finite activity jumps. Similarly, the evolution of the price of one financial asset may be modeled by a stochastic volatility process and finite activity jumps. The value of a contingent claim, written on assets where the underlying evolves by either of these two-factor processes, is given by the solution of a linear, two-dimensional, parabolic, partial integro-differential equation (PIDE). The focus of this thesis is the development of new, efficient numerical solution approaches for these PIDE's for both linear and non-linear cases. A localization scheme approximates the initial-value problem on an infinite spatial domain by an initial-boundary value problem on a finite spatial domain. Convergence of the localization method is proved using a Green's function approach. An implicit, finite difference method discretizes the PIDE. The theoretical conditions for the stability of the discrete approximation are examined under both maximum and von Neumann analysis. Three linearly convergent, monotone variants of the approach are reviewed for the constant coefficient, two-asset case and reformulated for the non-constant coefficient, stochastic volatility case. Each monotone scheme satisfies the conditions which imply convergence to the viscosity solution of the localized PIDE. A fixed point iteration solves the discrete, algebraic equations at each time step. This iteration avoids solving a dense linear system through the use of a lagged integral evaluation. Dense matrix-vector multiplication is avoided by using an FFT method. By using Green's function analysis, von Neumann analysis and maximum analysis, the fixed point iteration is shown to be rapidly convergent under typical market parameters. Combined with a penalty iteration, the value of options with an American early exercise feature may be computed. The rapid convergence of the iteration is verified in numerical tests using European and American options with vanilla payoffs, and digital, one-touch option payoffs. These tests indicate that the localization method for the PIDE's is effective. Adaptations are developed for degenerate or extreme parameter sets. The three monotone approaches are compared by computational cost and resulting error. For the stochastic volatility case, grid rotation is found to be the preferred approach. Finally, a new algorithm is developed for the solution of option values in the non-linear case of a two-factor option where the jump parameters are known only to within a deterministic range. This case results in a Hamilton-Jacobi-Bellman style PIDE. A monotone discretization is used and a new fixed point, policy iteration developed for time step solution. Analysis proves that the new iteration is globally convergent under a mild time step restriction. Numerical tests demonstrate the overall convergence of the method and investigate the financial implications of uncertain parameters on the option value.
15

Linear and Non-linear Monotone Methods for Valuing Financial Options Under Two-Factor, Jump-Diffusion Models

Clift, Simon Sivyer January 2007 (has links)
The evolution of the price of two financial assets may be modeled by correlated geometric Brownian motion with additional, independent, finite activity jumps. Similarly, the evolution of the price of one financial asset may be modeled by a stochastic volatility process and finite activity jumps. The value of a contingent claim, written on assets where the underlying evolves by either of these two-factor processes, is given by the solution of a linear, two-dimensional, parabolic, partial integro-differential equation (PIDE). The focus of this thesis is the development of new, efficient numerical solution approaches for these PIDE's for both linear and non-linear cases. A localization scheme approximates the initial-value problem on an infinite spatial domain by an initial-boundary value problem on a finite spatial domain. Convergence of the localization method is proved using a Green's function approach. An implicit, finite difference method discretizes the PIDE. The theoretical conditions for the stability of the discrete approximation are examined under both maximum and von Neumann analysis. Three linearly convergent, monotone variants of the approach are reviewed for the constant coefficient, two-asset case and reformulated for the non-constant coefficient, stochastic volatility case. Each monotone scheme satisfies the conditions which imply convergence to the viscosity solution of the localized PIDE. A fixed point iteration solves the discrete, algebraic equations at each time step. This iteration avoids solving a dense linear system through the use of a lagged integral evaluation. Dense matrix-vector multiplication is avoided by using an FFT method. By using Green's function analysis, von Neumann analysis and maximum analysis, the fixed point iteration is shown to be rapidly convergent under typical market parameters. Combined with a penalty iteration, the value of options with an American early exercise feature may be computed. The rapid convergence of the iteration is verified in numerical tests using European and American options with vanilla payoffs, and digital, one-touch option payoffs. These tests indicate that the localization method for the PIDE's is effective. Adaptations are developed for degenerate or extreme parameter sets. The three monotone approaches are compared by computational cost and resulting error. For the stochastic volatility case, grid rotation is found to be the preferred approach. Finally, a new algorithm is developed for the solution of option values in the non-linear case of a two-factor option where the jump parameters are known only to within a deterministic range. This case results in a Hamilton-Jacobi-Bellman style PIDE. A monotone discretization is used and a new fixed point, policy iteration developed for time step solution. Analysis proves that the new iteration is globally convergent under a mild time step restriction. Numerical tests demonstrate the overall convergence of the method and investigate the financial implications of uncertain parameters on the option value.
16

An Examination of volatility Transmission and Systematic Jump Risk in Exchange Rate and Interest Rate Markets

Kao, Chiu-Fen 06 July 2011 (has links)
This dissertation investigates the volatility of the relationships between exchange rates and interest rates. The first part of the paper explores the transmission relationship between these two markets using a time-series model. Previous studies have assumed that covariance was constant in both markets. However, if the volatilities of the exchange rate and interest rate markets are correlated over time, the interaction and spillover effects between the two markets may be affected by time-varying covariance. Hence, this paper utilizes the BEKK-GARCH model developed by Engle and Kroner (1995) to capture the dynamic relationship between the exchange rates and interest rates. This study uses the returns data for G7 members¡¦ exchange rates and interest rates to test whether these markets exhibited volatilities spillover from 1978 to 2009. The results show bi-directional volatility spillovers in the markets of the UK, the Euro countries, and Canada, where the volatilities of the two markets were interrelated. The second part of the paper explores the relationship between exchange rates and interest rates using a jump diffusion model. Previous studies assumed that the dynamic processes of exchange rates and interest rates follow a diffusion process with a continuous time path, but an increasing number of empirical studies have shown that a continuous diffusion stochastic model does not capture the dynamic process of these variables. Thus, this paper investigates the discontinuous variables of exchange rates and interest rates and assumes that these variables follow a jump diffusion process. The UIRP model is employed to explore the relationship between both variables and to divide the systematic risk into systematic continuous risk and systematic jump risk. The returns data for G7 members¡¦ exchange rates and interest rates from 2005 to 2010 were analyzed to test whether the expected exchange rate is affected by jump components when the interest rate market experiences a jump. The results show that the jump diffusion model has more explanatory power than the pure diffusion model does, and, when the interest rate market experiences a jump risk, the systematic jump risk has a significant relationship with the expected exchange rates in some G7 countries.
17

Pricing American options in the jump diffusion model

Chang, Yu-Chun 21 July 2005 (has links)
In this study, we use the McKean's integral equation to evaluate the American option price for constant jump di
18

Credit Risk Modeling With Stochastic Volatility, Jumps And Stochastic Interest Rates

Yuksel, Ayhan 01 December 2007 (has links) (PDF)
This thesis presents the modeling of credit risk by using structural approach. Three fundamental questions of credit risk literature are analyzed throughout the research: modeling single firm credit risk, modeling portfolio credit risk and credit risk pricing. First we analyze these questions under the assumptions that firm value follows a geometric Brownian motion and the interest rates are constant. We discuss the weaknesses of the geometric brownian motion assumption in explaining empirical properties of real data. Then we propose a new extended model in which asset value, volatility and interest rates follow affine jump diffusion processes. In our extended model volatility is stochastic, asset value and volatility has correlated jumps and interest rates are stochastic and have jumps. Finally, we analyze the modeling of single firm credit risk and credit risk pricing by using our extended model and show how our model can be used as a solution for the problems we encounter with simple models.
19

A essay on the housing price jump risk and the catastrophe risk for the property insurance company

Chang, Chia-Chien 29 September 2008 (has links)
This dissertation includes two topics. For the first topic about the housing price jump risk, we use EM gradient algorithms to estimate parameters of the jump diffusion model and test whether the US monthly housing price have jump risk during 1986 to 2006. Then, in order to obtain a viable pricing framework of mortgage insurance contracts, this paper uses the jump diffusion processes of Merton (1976) to model the dynamic process of housing price. Using this model, we investigate the impact of price jump risk on the valuation of mortgage insurance premium from jump intensity, abnormal volatility of jump size and normal volatility. Empirical results indicate that the abnormal volatility of jump size has the most significant impact on the mortgage insurance premium. For the second topic about the catastrophe risk, we investigate that, for catastrophic events, the assumption that catastrophe claims occur in terms of the Poisson process seems inadequate as it has constant intensity. We propose Markov Modulated Poisson process to model the arrival process for catastrophic events. Under this process, the underlying state is governed by a homogenous Markov chain, and it is the generalization of Cummins and Geman (1993, 1995), Chang, Chang, and Yu (1996), Geman and Yor (1997) and Vaugirard (2003a, 2003b). We apply Markov jump diffusion model to derive pricing formulas for catastrophe insurance products, included catastrophe futures call option, catastrophe PCS call spread and catastrophe bond. We use the data of PCS index and the annual number of hurricane events during 1950 to 2004 to test the quality of the fitting under the Markov Modulated Poisson process and the Poisson process. We reach the conclusion that the Markov Modulated Poisson process is fitter than the Poisson process and Weiner process in modeling the arrival rate of hurricane events when pricing three insurance products. Hence, if different status of climate environment has significant different arrival intensity in real economy, using jump diffusion model to evaluate CAT insurance products could cause significant mispricing.
20

The Valuation of Inflation-Protected Securities in Systematic Jump Risk¡GEvidence in American TIPS Market

Lin, Yuan-fa 18 June 2009 (has links)
Most of the derivative pricing models are developed in the jump diffusion models, and many literatures assume those jumps are diversifiable. However, we find many risk cannot be avoided through diversification. In this paper, we extend the Jarrow and Yildirim model to consider the existence of systematic jump risk in nominal interest rate, real interest rate and inflation rate to derive the no-arbitrage condition by using Esscher transformation. In addition, this study also derives the value of TIPS and TIPS European call option. Furthermore, we use the econometric theory to decompose TIPS market price volatility into a continuous component and a jump component. We find the jump component contribute most of the TIPS market price volatility. In addition, we also use the TIPS yield index to obtain the systematic jump component and systematic continuous component to find the systematic jump beta and the systematic continuous beta. The results show that the TIPS with shorter time to maturity are more vulnerable to systematic jump risk. In contrast, the individual TIPS with shorter time to maturity is more vulnerable to systematic jump. Finally, the sensitive analysis is conducted to detect the impacts of jumps risk on the value of TIPS European call option.

Page generated in 0.063 seconds