Spelling suggestions: "subject:"nun cterminal 3kinase (JNK)"" "subject:"nun cterminal 3βkinase (JNK)""
1 |
Oxidative stress induced C-Jun N-terminal Kinase (JNK) activation in tendon cells upregulates MMP1 mRNA and protein expressionWang, Fang, St George Clinical school, UNSW January 2006 (has links)
To explore the potential mechanisms of tendon degeneration, we investigated the role of c-Jun N-terminal Kinase (JNK) activation and the regulation of matrix metalloproteinase 1 (MMP1) in tendon matrix degradation under oxidative stress. JNK and MMP1 activity in samples from normal and ruptured human supraspinatus tendons were evaluated by immunohistochemistry. Real-time quantitative PCR was utilized to evaluate MMP1 mRNA expression and western blotting for MMP1 and JNK protein detection. JNK activation and increased MMP1 activity were found in the torn human supraspinatus tendon tissue, as well as in human tendon cells under in vitro oxidative stress. Inhibition of JNK prevented MMP1 over-expression in oxidative stressed human tendon cells. Results from the current study indicated that stress activated JNK plays an important role in tendon matrix degradation, possibly through upregulating of MMP1.
|
2 |
Διερεύνηση μηχανισμών χημειοαντίστασης στην οξεία μυελογενή λευχαιμία με έμφαση στο ρόλο ενδοκυττάριων μονοπατιών μεταγωγής σήματοςΛαγκαδινού, Ελένη 26 October 2009 (has links)
Η θεραπεία της Οξείας Μυελογενούς Λευχαιμίας (ΟΜΛ) είναι συχνά ανεπιτυχής λόγω ανάπτυξης κυτταρικής αντίστασης στα αντιλευχαιμικά φάρμακα. Εκτός από την έκφραση Ρ-γλυκοπρωτείνης στα λευχαιμικά κύτταρα, άλλοι κυτταρικοί παράγοντες μπορούν επίσης να συμβάλλουν στην χημειοαντίσταση. Η c- Jun N-terminal Kinase (JNK) είναι μία πρωτεινική κινάση που ενεργοποιείται όταν τα κύτταρα εκτεθούν σε χημειοθεραπευτικά φάρμακα (ΧΜΘ). Πρόσφατες μελέτες σε συμπαγείς όγκους συσχετίζουν την χημειοαντίσταση με αδυναμία των καρκινικών κυττάρων να ενεργοποιήσουν τη JNK κατόπιν επίδρασης ΧΜΘ. Σκοπός της εργασίας είναι να διερευνήσει αν η χημειοαντίσταση στην ΟΜΛ οφείλεται σε ενδογενή αδυναμία των λευχαιμικών βλαστών να ενεργοποιήσουν τη JNK. Μεθοδολογία: Συγκρίναμε ευαίσθητες (U937) και ανθεκτικές (U937R) στις ανθρακυκλίνες κυτταρικές σειρές ΟΜΛ ως προς την δυνατότητα in vitro ενεργοποίησης της JNK κατόπιν επίδρασης ΧΜΘ (Western Blot). Επιπλέον, στις λευχαιμικές κυτταρικές σειρές ελέγξαμε απευθείας τη σημασία της JNK στην χημειοαντίσταση με πειράματα α) αποσιώπησης της JNK με JNK1–στοχεύον siRNA και β) ενεργοποίησης της JNK (διαμόλυνση με τον ΜΚΚ4/SEK1 άνωθεν ενεργοποιητή της JNK) Περαιτέρω, ελέγξαμε την in vitro δυνατότητα ενεργοποίησης της JNK σε 29 πρωτογενή μυελικά δείγματα ΟΜΛ κατόπιν βραχείας διάρκειας (30-60min) έκθεση στην daunorubicin (1μΜ) και συσχετίσαμε τα εργαστηριακά δεδομένα με κλινικά χαρακτηριστικά των ασθενών με ΟΜΛ. Αποτελέσματα: In vitro θεραπεία των U937 κυττάρων με ανθρακυκλίνες προκάλεσε ισχυρή και ταχεία ενεργοποίηση της JNK και απόπτωση. Αντίθετα, στα πολυανθεκτικά U937R κύτταρα δεν παρατηρήθηκε ενεργοποίηση της JNK, ακόμη και σε συνθήκες υψηλής ενδοκυττάριας συγκέντρωσης ανθρακυκλινών. Αποσιώπηση της JNK στα ευαίσθητα U937 κύτταρα τα έκανε ανθεκτικά στις ανθρακυκλίνες (JNK1-siRNA διαμολυσμένα U937 κύτταρα εμφάνισαν 50.4% και 61.3% ελαττωμένη daunorubicin- (DNR, 1μΜ 24hr) και doxorubicin- (DOX, 1.5μΜ 24hr) προκαλούμενη απόπτωση αντίστοιχα, συγκριτικά με U937 κύτταρα-μάρτυρες, P<0.001). Αντίστροφα, εκλεκτική ενεργοποίηση της ανενεργού JNK στα ανθεκτικά U937R κύτταρα τα έκανε 3.3 φορές πιο ευαίσθητα στη DNR και 3.1 φορά πιο ευαίσθητα στη DΟΧ, συγκριτικά με U937R κύτταρα-μάρτυρες. Επιπρόσθετα, παρατηρήσαμε ισχυρή συσχέτιση μεταξύ των in vitro φαρμακοδυναμικών αλλαγών των επιπέδων ενεργοποίησης της JNK στους λευχαιμικούς βλάστες και της ανταπόκρισης των ασθενών με ΟΜΛ στη χημειοθεραπευτική αγωγή (P=0.012). Η απουσία ενεργοποίησης της JNK στα βλαστικά κύτταρα συσχετίστηκε επίσης με αρνητικούς προγνωστικούς παράγοντες για την ΟΜΛ, όπως γηραιότερη ηλικία των ασθενών (P=0.046) και ΟΜΛ αναπτυσσόμενη επί εδάφους μυελοδυσπλασίας (P=0.017).
Συνοψίζοντας, τα in vitro και in vivo αποτελέσματα μας προτείνουν την ενδογενή αποτυχία ενεργοποίησης της πρωτεινικής κινάσης JNK στους λευχαιμικούς βλάστες σαν έναν εναλλακτικό μηχανισμό χημειοαντίστασης στην ΟΜΛ. Η διελεύκανση των μηχανισμών εκείνων που επιφέρουν καταστολή της JNK στην χημειοανθεκτική ΟΜΛ μπορεί να ωφελήσει θεραπευτικά. / Chemotherapy resistance is a major challenge in acute myeloid leukemia (AML). Besides the P-glycoprotein efflux, additional cellular factors may contribute to drug-resistance in AML. c- Jun N-terminal Kinase (JNK) is activated after exposure of cells to chemotherapeutics. We asked whether chemoresistance in AML is attributed to intrinsic failure of the AML blasts to activate JNK. In vitro treatment of U937 AML cell line with anthracyclines induced a rapid and robust JNK phosphorylation and apoptosis. In contrast, the anthracyline-resistant derivative cell lines U937R and URD40 showed no JNK activation after exposure to anthracyclines, also at doses that resulted in high accumulation of the drug within the cells. RNA interference-based depletion of JNK1 in drug-sensitive U937 cells made them chemoresistant, whereas selective restoration of the inactive JNK pathway in the resistant U937R cells sensitized them to anthracyclines. Short-term in vitro exposure of primary AML cells (n=29) to daunorubicin showed a strong correlation between the in vitro pharmacodymanic changes of phospho-JNK levels and the response of patients to standard induction chemotherapy (P=0.012). We conclude that JNK activation failure confers another mechanism of anthracycline resistance in AML. Elucidating the ultimate mechanisms leading to JNK suppression in chemoresistant AML may be of major therapeutic value.
|
3 |
The role of mitochondria in regulating MAPK signalling pathways during oxidative stressPang, Wei Wei January 2006 (has links)
[Truncated abstract] Reactive oxygen species (ROS) have been implicated to play a major role in many pathological conditions including heart attack and stroke. Their ability to modulate the extracellular signal-regulated protein kinase (ERK) and c-Jun Nterminal kinase (JNK) signalling pathways, thereby influencing cellular response has been well-documented. Recent studies implicate a central role for mitochondria in ERK and JNK activation by ROS although the mechanisms remained unresolved. Using Jurkat T-lymphocyte as a cell model, this study demonstrated increased mitochondrial ROS production as a result of decreased mitochondrial complex activities mediated by hydrogen peroxide treatment. This is the first study to show that mitochondria are not essential for activating ERKs, however damaged mitochondria producing ROS can be expected to cause sustained ERK activation . . . This study revealed that JNK and its upstream kinases MKK4, MKK7 and ASK1 are associated with the mitochondria. Furthermore, findings from this study imply that JNK resides in the mitochondrial matrix. This study is the first to demonstrate that mitochondrial JNK can be activated in a cell-free environment by signals originating from the mitochondria. Experimental work using isolated mitochondria demonstrated that mitochondrial JNK can be activated by ROS generated from the mitochondria themselves. Flavin-containing proteins appear to be the main sources of mitochondrial-ROS which signal through redoxsensitive proteins to activate mitochondrial JNK.
|
4 |
Exploration of 1,9-Pyrazoloanthrones as a Copious Reserve for Multifarious Chemical and Biological ApplicationsPrasad, Karothu Durga January 2014 (has links) (PDF)
Pyrazoloanthrone and its analogues form the central core of the thesis and the work is focused on the evaluation of chemical and biological applications of pyrazoloanthrones. Selective and sensitive detection of biologically, environmentally and industrially important molecular species such as fluoride, cyanide and picric acid by using pyrazoloanthrones as sensors form the first part while the second part deals with selective and specific kinase inhibition by pyrazoloanthrones to moderate inflammation associated disorders like septic shock. All the investigations are based on extensive crystallographic studies of the participating molecules.
Chapter 1 provides a brief review on the history and biological importance of 1,9-pyrazoloanthrones. The potential of these molecules as probes in sensor chemistry and protein kinase inhibition is envisaged. A short account of the techniques employed for the investigations along with a preamble is presented.
Chapter 2 is divided into two parts. Part A deals with the design of a colorimetric and “turn-on” fluorescent chemosensor based on 1,9-pyrazoloanthrone specifically for cyanide and fluoride ion detection. A remarkable solid state reaction indicated by the development of intense red color occurs when crystals of tetrabutylammonium cyanide/fluoride are brought in physical contact with 1,9¬pyrazoloanthrone resulting in corresponding molecular complexes (Figure 1). X-ray crystal structures of these complexes and also of 1,9-pyrazoloanthrone have been determined and the ion sensing activity has been substantiated on the basis of spectroscopic (absorption, fluorescence and NMR) and structural analyses. The crystal structure of the parent compound exhibits a disorder as a consequence of tautomerism and the disorder gets carried on to the complexes as well with even the cyanide and the fluoride ions showing partial occupancy sites. The presence of the –NH group and associated intramolecular charge transfer upon complex formation is attributed to the extreme sensitivity of 1,9-pyrazoloanthrone for cyanide and fluoride (detection limits of
0.2 ppb and 2 ppb) ions respectively.
Figure 1. Development of intense red color during the solid state reaction (shown on left) and the turn on fluorescence behavior (shown to the right)
Part B demonstrates the utilization of electron rich N-alkyl substituted pyrazoloanthrones to design sensors for detecting explosive and electron deficient nitro aromatics such as picric acid (PA). The N-alkyl derivative of 1,9-pyrazoloanthrone has been synthesized, characterized by single crystal X-ray diffraction studies and evaluated as a potent sensor for picric acid. NMR and fluorescence lifetime measurements validate that the fluorescence quenching of sensor compound by PA (Figure 2) as due to the formation of excited state charge-transfer complex resulting in dynamic quenching.
Figure 2. Fluorescence quenching measurements demonstrating the dynamic quenching in the charge transfer complex.
Chapter 3 deals with the biological evaluation of 1,9-pyrazoloanthrone and its alkyl derivatives towards the inhibition of a decisive protein kinase called c-Jun N-terminal Kinase (JNK), an important member of MAP kinase family. JNK controls crucial cellular processes like apoptosis and cell proliferation and is implicated in disorders associated with inflammation such as septic shock, arthritis, inflammatory bowel disease, etc. Therapeutic inhibition of JNK activity by small molecules has proven to be advantageous in the treatment of diseases coupled with derailed inflammation. In this context, it is already established that 1,9-pyrazoloanthrone (SP600125) effectively
and selectively inhibits JNK at concentrations beyond 10 M. A series of alkyl isomers of pyrazoloanthrone derivatives have been synthesized to evaluate the structural implications of inhibition and to elevate both selectivity and sensitivity at lower concentrations. The crystal structures of these isomers have been characterized and their utility as inhibitors has been tested for their in vitro inhibitory activity over c-Jun N-terminal kinase (JNK). The minimum inhibitory concentrations required by these molecules to inhibit JNK was found to be lesser as compared to 1,9-pyrazoloanthrone (<5 µM; Figure 3). Critically, it turns out that among the various inhibitors synthesized, the lead candidates SPP1 and SPB1 display specific inhibition of JNK among other LPS activated MAP kinases like ERK1/2 and p38. These results suggest that N-alkyl (propyl and butyl) bearing pyrazoloanthrone scaffolds provide promising therapeutic inhibitors for JNK in regulating inflammation associated disorders.
Figure 3. Inhibition of JNK in macrophages by the SPP1 and SPB1 compared to the known SP600125.
Inspired by the results reported in the previous chapter, Chapter 4 is devoted to the generation of a library of compounds based on SPP1 and SPB1 with a purpose to design inhibitors of JNK which perform at the lowest possible concentrations and the consequent evaluation of their potential on endotoxin induced septic shock. Severe sepsis or septic shock is one of the rising causes for mortality worldwide representing nearly 10% of intensive care unit admissions. Susceptibility to sepsis is identified to be mediated by innate pattern recognition receptors and responsive signaling pathways of the host. The c-Jun N-terminal Kinase (JNK)-mediated signaling events play critical role in bacterial infection triggered multi-organ failure, cardiac dysfunction and mortality.
Figure 4. Two selected molecules for specific inhibition studies of JNK at lower concentrations.
It is demonstrated that alkyl and halogen substitution on the periphery of anthrapyrazolone increases the binding potency of the inhibitors specifically towards JNK. Based on the results from both in vitro with macrophages and in vivo with the mouse model of septicemia, the potential role of two selected molecules D1 and D2 (Figure 4) in regulating endotoxin induced inflammation is firmly established. Further, it is demonstrated that hydrophobic and hydrophilic interactions generated by these small molecules effectively block endotoxin-induced inflammatory genes expression in in vitro and septic shock in vivo, in a mouse model, with remarkable efficacies. Altogether, the in vitro as well as the in vivo data clearly potentiates the selective inhibitory capacity of small molecule inhibitors like D1 and D2 which can facilitate the treatment of current inflammatory disorders when used in combination with the available drugs having varied efficacies. The results rationalize the significance of the diversity oriented synthesis of small molecules for selective inhibition of JNK and their potential in the treatment of severe sepsis.
|
5 |
The role of the JNK/AP-1 pathway in the induction of iNOS and CATs in vascular cellsZamani, Marzieh January 2013 (has links)
Nitric oxide (NO) is an important biological molecule within the body, which over production of this molecule in response to different stimulations can cause various inflammatory diseases. Over production of this molecule is caused by the induction of the inducible nitric oxide synthase (iNOS) enzyme. This enzyme uses L-arginine as a substrate and therefore the presence and transport of this amino acid into the cells can be a key factor in regulating NO over production. Different signalling mechanisms have been implicated in the regulation of this pathway and one of which involves the Mitogen Activated Protein Kinases (MAPK). This family of proteins respond to inflammatory conditions and may mediate effects induced by inflammatory mediators. Of the MAPKs, the role of the c-Jun-N-terminal kinase (JNK) pathway in the induction of iNOS is still controversial. JNK and its downstream target, the transcription factor Activator Protein-1 (AP-1), have shown contradictory effects on iNOS induction leading to controversies over their role in regulating iNOS expression in different cell systems or with various stimuli. The studies described in this thesis have determined the role of JNK/AP-1 on iNOS expression, NO production, L-arginine uptake and also on the transporters responsible for L-arginine transport into the cells. The studies were carried out in two different cell types: rat aortic smooth muscle cells (RASMCs) and J774 macrophages which are both critically associated with the over production of NO in vascular inflammatory disease states. The first approach was to block the expression of the inducible L-arginine-NO pathway using SP600125 and JNK Inhibitor VIII which are both pharmacological inhibitors of JNK. The results from these studies showed that the pharmacological intervention was without effect in RASMCs, but inhibited iNOS, NO and L-arginine transport in J774 macrophages. In contrast, the molecular approach employed using two dominant negative constructs of AP-1 (TAM-67 and a-Fos) revealed a different profile of effects in RASMCs, where a-Fos caused an induction in iNOS and NO while TAM-67 had an inhibitory effect on iNOS, NO, L-arginine transport and CAT-2B mRNA expression. The latter was unaffected in RASMCs but suppressed in J774 macrophages by SP600125. Examination of JNK isoforms expression showed the presence of JNK1 and 2 in both cell systems. Moreover, stimulation with LPS/IFN- or LPS alone resulted in JNK phosphorylation which did not reveal any difference between smooth muscle cells and macrophages. In contrast, expression and activation of AP-1 subunits revealed differences between the two cell systems. Activation of cells with LPS and IFN- (RASMCs) or LPS alone (J774 macrophages) resulted in changes in the activated status of the different AP-1 subunit which was different for the two cell systems. In both cell types c-Jun, JunD and Fra-1 were increased and in macrophages, FosB activity was also enhanced. Inhibition of JNK with SP600125 caused down-regulation in c-Jun in both cell types. Interestingly this down-regulation was in parallel with increases in the subunits JunB, JunD, c-Fos and Fra-1 in RASMCs or JunB and Fra-1 in J774 macrophages. Since, SP600125 was able to exert inhibitory effects in the latter cell type but not in RASMCs, it is possible that the compensatory up-regulation of certain AP-1 subunits in the smooth muscle cells may compensate for c-Jun inhibition thereby preventing suppression of iNOS expression. This notion clearly needs to be confirmed but it is potentially likely that hetero-dimers formed between JunB, JunD, c-Fos and Fra-1 could sustain gene transcription in the absence of c-Jun. The precise dimer required has not been addressed but unlikely to exclusively involve JunB and Fra-1 as these are up-regulated in macrophages but did not sustain iNOS, NO or induced L-arginine transport in the presence of SP600125. To further support the argument above, the dominant negatives caused varied effects on the activation of the different subunits. a-Fos down-regulated c-Jun, c-Fos, FosB, Fra-1 whereas TAM-67 reduced c-Jun and c-Fos but marginally induced Fra-1 activity. Associated with these changes was an up-regulation of iNOS-NO by a-Fos and inhibition by TAM-67. Taken together, the data proposes a complex mechanism(s) that regulate the expression of the inducible L-arginine-NO pathway in different cell systems and the complexity may reflect diverse intracellular changes that may be different in each cell type and not always be apparent using one experimental approach especially where this is pharmacological. Moreover, these findings strongly suggest exercising caution when interpreting pure pharmacological findings in cell-based systems particularly where these are inconsistent or contradictory.
|
Page generated in 0.0809 seconds