Spelling suggestions: "subject:"btheory off C^{*} algebra"" "subject:"btheory oof C^{*} algebra""
1 |
K-Teoria e aplicações para cálculos pseudodiferenciais globais e seus problemas de fronteira / K-Theory and applications for global pseudodifferential calculus and its boundary problems.Lopes, Pedro Tavares Paes 17 August 2012 (has links)
Nesta tese vamos apresentar dois resultados a respeito de K-teoria de álgebras C^{*} de classes de operadores pseudodiferenciais que são globalmente definidos em \\mathbb^. O primeiro resultado é a prova da regularidade da função \\eta para operadores clássicos com símbolos de Shubin. Vamos mostrar que a álgebra de operadores pseudodiferenciais em \\mathbb^ com símbolos de Shubin permite a construção de potências complexas e um tipo de traço de Kontsevich-Vishik numa forma muito similar àquela feita para variedades compactas, com definições até mais simples. Mostraremos, então, que podemos definir as funções \\zeta e \\eta também para esses símbolos. Finalmente mostraremos como o conhecimento de fatos simples sobre a sua K-teoria permitem a prova da regularidade da função \\eta. Para variedades compactas, esse resultado tem muitas implicações. Acreditamos assim que ele também possa ser interessante para os estudos de operadores globais em \\mathbb^. O segundo resultado é o cálculo da K-teoria de operadores limitados gerados por operadores de Boutet de Monvel SG de ordem (0,0) e tipo zero em \\mathbb_{+}^. Boutet de Monvel introduziu a álgebra que leva o seu nome para estudar o índice de operadores elípticos de fronteira em variedades compactas com bordo. Mais recentemente uma nova abordagem foi proposta por Melo, Nest, Schrohe e Schick para obter resultados sobre o índice de Fredholm usando a K-teoria de álgebras C^{*}, uma ferramenta que não era disponível ainda quando Boutet de Monvel desenvolveu sua álgebra. Nossa ideia foi, então, mostrar como calcular a K-teoria de álgebras de Boutet de Monvel com símbolos SG em \\mathbb_{+}^, em que os símbolos SG são uma classe de símbolos globalmente definidos em \\mathbb^. Acreditamos que isso possa ser útil também ao estudo de problemas elípticos de fronteira para operadores de Boutet de Monvel com símbolos SG em certas classes de variedades não compactas. / We are going to present two results concerning K-theory of C^{*} algebras of classes of pseudodifferential operators that are globally defined in \\mathbb^. The first result is the proof of the regularity of the \\eta function for classical operators with Shubin symbols. We are going to show that the algebra of classical pseudodifferential operators in \\mathbb^ with Shubin symbols allows the construction of complex powers and a kind of Kontsevich-Vishik trace in a very similar way as on compact manifolds, with even easier definitions. Then we show that we can define the \\zeta and \\eta functions also for these symbols. Finally we will show how the knowledge of simple facts about the K-theory of pseudodifferential operators with Shubin\'s symbols allows the proof of the regularity of the \\eta function at 0. For compact manifolds, this regularity is a result that has many implications. Therefore it may also be interesting for global operators in \\mathbb^. The second result is the evaluation of the K-theory of bounded operators generated by SG Boutet de Monvel operators of order (0,0) and type 0 in \\mathbb_^. Boutet de Monvel introduced his algebra to study the index of elliptic boundary value problems on compact manifolds. More recently a new approach was proposed by Melo, Nest, Schrohe and Schick to obtain results about the index of Fredholm operators using the K-theory of C^ algebras, a tool which was not well known when Boutet de Monvel published his work. The idea here is to show how one can evaluate the K-theory of the Boutet de Monvel operators with SG symbols in \\mathbb_^, where SG symbols is a class of symbols globally defined in \\mathbb^. We believe that this can be useful to the study of index of Fredholm problems also in the case of Boutet de Monvel operators with SG symbols in some classes of non-compact manifolds.
|
2 |
K-Teoria e aplicações para cálculos pseudodiferenciais globais e seus problemas de fronteira / K-Theory and applications for global pseudodifferential calculus and its boundary problems.Pedro Tavares Paes Lopes 17 August 2012 (has links)
Nesta tese vamos apresentar dois resultados a respeito de K-teoria de álgebras C^{*} de classes de operadores pseudodiferenciais que são globalmente definidos em \\mathbb^. O primeiro resultado é a prova da regularidade da função \\eta para operadores clássicos com símbolos de Shubin. Vamos mostrar que a álgebra de operadores pseudodiferenciais em \\mathbb^ com símbolos de Shubin permite a construção de potências complexas e um tipo de traço de Kontsevich-Vishik numa forma muito similar àquela feita para variedades compactas, com definições até mais simples. Mostraremos, então, que podemos definir as funções \\zeta e \\eta também para esses símbolos. Finalmente mostraremos como o conhecimento de fatos simples sobre a sua K-teoria permitem a prova da regularidade da função \\eta. Para variedades compactas, esse resultado tem muitas implicações. Acreditamos assim que ele também possa ser interessante para os estudos de operadores globais em \\mathbb^. O segundo resultado é o cálculo da K-teoria de operadores limitados gerados por operadores de Boutet de Monvel SG de ordem (0,0) e tipo zero em \\mathbb_{+}^. Boutet de Monvel introduziu a álgebra que leva o seu nome para estudar o índice de operadores elípticos de fronteira em variedades compactas com bordo. Mais recentemente uma nova abordagem foi proposta por Melo, Nest, Schrohe e Schick para obter resultados sobre o índice de Fredholm usando a K-teoria de álgebras C^{*}, uma ferramenta que não era disponível ainda quando Boutet de Monvel desenvolveu sua álgebra. Nossa ideia foi, então, mostrar como calcular a K-teoria de álgebras de Boutet de Monvel com símbolos SG em \\mathbb_{+}^, em que os símbolos SG são uma classe de símbolos globalmente definidos em \\mathbb^. Acreditamos que isso possa ser útil também ao estudo de problemas elípticos de fronteira para operadores de Boutet de Monvel com símbolos SG em certas classes de variedades não compactas. / We are going to present two results concerning K-theory of C^{*} algebras of classes of pseudodifferential operators that are globally defined in \\mathbb^. The first result is the proof of the regularity of the \\eta function for classical operators with Shubin symbols. We are going to show that the algebra of classical pseudodifferential operators in \\mathbb^ with Shubin symbols allows the construction of complex powers and a kind of Kontsevich-Vishik trace in a very similar way as on compact manifolds, with even easier definitions. Then we show that we can define the \\zeta and \\eta functions also for these symbols. Finally we will show how the knowledge of simple facts about the K-theory of pseudodifferential operators with Shubin\'s symbols allows the proof of the regularity of the \\eta function at 0. For compact manifolds, this regularity is a result that has many implications. Therefore it may also be interesting for global operators in \\mathbb^. The second result is the evaluation of the K-theory of bounded operators generated by SG Boutet de Monvel operators of order (0,0) and type 0 in \\mathbb_^. Boutet de Monvel introduced his algebra to study the index of elliptic boundary value problems on compact manifolds. More recently a new approach was proposed by Melo, Nest, Schrohe and Schick to obtain results about the index of Fredholm operators using the K-theory of C^ algebras, a tool which was not well known when Boutet de Monvel published his work. The idea here is to show how one can evaluate the K-theory of the Boutet de Monvel operators with SG symbols in \\mathbb_^, where SG symbols is a class of symbols globally defined in \\mathbb^. We believe that this can be useful to the study of index of Fredholm problems also in the case of Boutet de Monvel operators with SG symbols in some classes of non-compact manifolds.
|
3 |
Uma descrição das aplicações de conexão em K-teoria de C*-álgebras usando cones / A description of the connecting maps in K-theory for C*-algebras using conesMaekawa, Renata Akemi 04 April 2014 (has links)
Dada uma aplicação f: B -> A entre duas C*-álgebras, o cone dessa aplicação, Cf, é o conjunto formado pelos pares (b,g) pertencentes à soma direta da C*-álgebra B com o cone CA tais que f(b) = g(0), sendo CA o cone de A. Neste trabalho estudamos o funtor determinado pela associação da sequência exata curta 0 -> SA -> Cf -> B -> 0 para cada *-homomorfismo f: B -> A, e demonstramos que esse funtor é exato. Caracterizamos as aplicações de conexão associadas à sequência exata 0 -> SA -> Cf -> B -> 0, mostrando que a aplicação do índice é dada por tAK1(f) e que a aplicação exponencial é dada por bAK0(f), sendo tA o isomorfismo entre K1(A) e K0(SA) e bA a aplicação de Bott. Por fim, usando que toda sequência exata curta de C*-álgebras pode ser vista na forma 0 -> Ker f -> B -> A -> 0, mostramos que as aplicações de conexão d1 e d0 associadas a cada sequência exata curta podem ser dadas por dn = Kn+1(j)-1 Kn+1(i) hn, em que j é a inclusão do núcleo de f em Cf, i é a inclusão da suspensão SA também em Cf, hn = bA e h1 = tA . / If f: B A is a map between the C*-algebras A and B, the mapping cone is the set of pairs (b,g) in the direct sum of B and CA such that f(b) = g(0), where CA is the cone of A. In this work, we study the functor determined by the assignment of the exact sequence 0 SA Cf B 0 to each *-homomorphism f: B -> A, and we show that this functor is exact. We characterize the connecting maps associated with the short exact sequence 0 SA Cf B 0 and we prove that its index map is tA K1(f) and that its exponential map is bA K0(f), where tA is the isomorphism between K1(A) and K0(SA), and bA is the Bott map. Finally, using that every short exact sequence of C*-algebras can be seen as 0 Ker f B (f ) A 0, we prove that the connecting maps, d1 and d0, associated with a short exact sequence are given by dn = Kn+1(j)-1 Kn+1(i) hn, where j is the inclusion of f\'s kernel in Cf, i is the inclusion of the suspension SA in Cf, hn = bA e h1 = tA .
|
4 |
Uma descrição das aplicações de conexão em K-teoria de C*-álgebras usando cones / A description of the connecting maps in K-theory for C*-algebras using conesRenata Akemi Maekawa 04 April 2014 (has links)
Dada uma aplicação f: B -> A entre duas C*-álgebras, o cone dessa aplicação, Cf, é o conjunto formado pelos pares (b,g) pertencentes à soma direta da C*-álgebra B com o cone CA tais que f(b) = g(0), sendo CA o cone de A. Neste trabalho estudamos o funtor determinado pela associação da sequência exata curta 0 -> SA -> Cf -> B -> 0 para cada *-homomorfismo f: B -> A, e demonstramos que esse funtor é exato. Caracterizamos as aplicações de conexão associadas à sequência exata 0 -> SA -> Cf -> B -> 0, mostrando que a aplicação do índice é dada por tAK1(f) e que a aplicação exponencial é dada por bAK0(f), sendo tA o isomorfismo entre K1(A) e K0(SA) e bA a aplicação de Bott. Por fim, usando que toda sequência exata curta de C*-álgebras pode ser vista na forma 0 -> Ker f -> B -> A -> 0, mostramos que as aplicações de conexão d1 e d0 associadas a cada sequência exata curta podem ser dadas por dn = Kn+1(j)-1 Kn+1(i) hn, em que j é a inclusão do núcleo de f em Cf, i é a inclusão da suspensão SA também em Cf, hn = bA e h1 = tA . / If f: B A is a map between the C*-algebras A and B, the mapping cone is the set of pairs (b,g) in the direct sum of B and CA such that f(b) = g(0), where CA is the cone of A. In this work, we study the functor determined by the assignment of the exact sequence 0 SA Cf B 0 to each *-homomorphism f: B -> A, and we show that this functor is exact. We characterize the connecting maps associated with the short exact sequence 0 SA Cf B 0 and we prove that its index map is tA K1(f) and that its exponential map is bA K0(f), where tA is the isomorphism between K1(A) and K0(SA), and bA is the Bott map. Finally, using that every short exact sequence of C*-algebras can be seen as 0 Ker f B (f ) A 0, we prove that the connecting maps, d1 and d0, associated with a short exact sequence are given by dn = Kn+1(j)-1 Kn+1(i) hn, where j is the inclusion of f\'s kernel in Cf, i is the inclusion of the suspension SA in Cf, hn = bA e h1 = tA .
|
Page generated in 0.3745 seconds