• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes / Finite for pairs of germs of equivalent Bi-K-bi-Lipschitz applications

Sena Filho, Edvalter da Silva January 2016 (has links)
SENA FILHO, Edvalter da Silva. Finitude para pares de germes de aplicações Bi-K-bi-Lipschitz equivalentes. 2016. 61 f. Tese (Doutorado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. / Submitted by Rocilda Sales (rocilda@ufc.br) on 2017-01-11T16:36:25Z No. of bitstreams: 1 2016_tese_essenafilho.pdf: 507783 bytes, checksum: 757aea745e363acfffd93d083b635d07 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-01-12T12:51:02Z (GMT) No. of bitstreams: 1 2016_tese_essenafilho.pdf: 507783 bytes, checksum: 757aea745e363acfffd93d083b635d07 (MD5) / Made available in DSpace on 2017-01-12T12:51:02Z (GMT). No. of bitstreams: 1 2016_tese_essenafilho.pdf: 507783 bytes, checksum: 757aea745e363acfffd93d083b635d07 (MD5) Previous issue date: 2016 / In this paper, we analyze the behavior of equivalence classes provided by the relation Bi-K-bi-Lipschitz. We show that when we are working with germs pairs of polynomial applications (f; g) : (Rn; 0) ! (Rp Rq; 0), with degree of f1; :::; fp; g1; :::; gq less than or equal to k 2 N, we have only a fi nite number of equivalence classes. We will also show in this work that the sets of equivalence classes with respect to strongly bi-lipschitz relation is fi nite. / Neste trabalho, iremos analisar o comportamento das classes de equivalência, fornecida pela rela ção Bi-K-bi-Lipschitz. Mostramos que, quando estamos trabalhando com pares de germes de aplica ções polinomiais (f; g) : (Rn; 0) ! (Rp Rq; 0), onde o grau de f1; :::fp; g1; :::; gq s~ao menores ou iguais a k 2 N, temos apenas uma quantidade fi nita de classes de equivalência. Tamb em mostraremos neste trabalho que o conjuntos das classes de equivalência com respeito a rela ção fortemente bi-lipschitz e fi nito.

Page generated in 0.0461 seconds