Spelling suggestions: "subject:"clustering"" "subject:"biclustering""
1 |
Clustering de trajetórias / Trajectory clusteringOshiro, Marcio Takashi Iura 16 September 2015 (has links)
Esta tese teve como objetivo estudar problemas cinéticos de clustering, ou seja, problemas de clustering nos quais os objetos se movimentam. O trabalho se concentrou no caso unidimensional, em que os objetos são pontos se movendo na reta real. Diversas variantes desse caso foram abordadas. Em termos do movimento, consideramos o caso em que cada ponto se move com uma velocidade constante num dado intervalo de tempo, o caso em que os pontos se movem arbitrariamente e temos apenas as suas posições em instantes discretos de tempo, o caso em que os pontos se movem com uma velocidade aleatória em que se conhece apenas o valor esperado da velocidade, e o caso em que, dada uma partição do intervalo de tempo, os pontos se movem com velocidades constantes em cada subintervalo. Em termos do tipo de clustering buscado, nos concentramos no caso em que o número de clusters é um dado do problema e consideramos diferentes medidas de qualidade para o clustering. Duas delas são tradicionais para problemas de clustering: a soma dos diâmetros dos clusters e o diâmetro máximo de um cluster. A terceira medida considerada leva em conta a característica cinética do problema, e permite, de uma maneira controlada, que o clustering mude com o tempo. Para cada uma das variantes do problema, são apresentados algoritmos, exatos ou de aproximação, alguns resultados de complexidade obtidos, e questões que ficaram em aberto. / This work aimed to study kinetic problems of clustering, i.e., clustering problems in which the objects are moving. The study focused on the unidimensional case, where the objects are points moving on the real line. Several variants of this case have been discussed. Regarding the movement, we consider the case where each point moves at a constant velocity in a given time interval, the case where the points move arbitrarily and we only know their positions in discrete time instants, the case where the points move at a random velocity in which only the expected value of the velocity is known, and the case where, given a partition of the time interval, the points move at constant velocities in each sub-interval. Regarding the kind of clustering sought, we focused in the case where the number of clusters is part of the input of the problem and we consider different measures of quality for the clustering. Two of them are traditional measures for clustering problems: the sum of the cluster diameters and the maximum diameter of a cluster. The third measure considered takes into account the kinetic characteristic of the problem, and allows, in a controlled manner, that a cluster change along time. For each of the variants of the problem, we present algorithms, exact or approximation, some obtained complexity results, and open questions.
|
2 |
Clustering de trajetórias / Trajectory clusteringMarcio Takashi Iura Oshiro 16 September 2015 (has links)
Esta tese teve como objetivo estudar problemas cinéticos de clustering, ou seja, problemas de clustering nos quais os objetos se movimentam. O trabalho se concentrou no caso unidimensional, em que os objetos são pontos se movendo na reta real. Diversas variantes desse caso foram abordadas. Em termos do movimento, consideramos o caso em que cada ponto se move com uma velocidade constante num dado intervalo de tempo, o caso em que os pontos se movem arbitrariamente e temos apenas as suas posições em instantes discretos de tempo, o caso em que os pontos se movem com uma velocidade aleatória em que se conhece apenas o valor esperado da velocidade, e o caso em que, dada uma partição do intervalo de tempo, os pontos se movem com velocidades constantes em cada subintervalo. Em termos do tipo de clustering buscado, nos concentramos no caso em que o número de clusters é um dado do problema e consideramos diferentes medidas de qualidade para o clustering. Duas delas são tradicionais para problemas de clustering: a soma dos diâmetros dos clusters e o diâmetro máximo de um cluster. A terceira medida considerada leva em conta a característica cinética do problema, e permite, de uma maneira controlada, que o clustering mude com o tempo. Para cada uma das variantes do problema, são apresentados algoritmos, exatos ou de aproximação, alguns resultados de complexidade obtidos, e questões que ficaram em aberto. / This work aimed to study kinetic problems of clustering, i.e., clustering problems in which the objects are moving. The study focused on the unidimensional case, where the objects are points moving on the real line. Several variants of this case have been discussed. Regarding the movement, we consider the case where each point moves at a constant velocity in a given time interval, the case where the points move arbitrarily and we only know their positions in discrete time instants, the case where the points move at a random velocity in which only the expected value of the velocity is known, and the case where, given a partition of the time interval, the points move at constant velocities in each sub-interval. Regarding the kind of clustering sought, we focused in the case where the number of clusters is part of the input of the problem and we consider different measures of quality for the clustering. Two of them are traditional measures for clustering problems: the sum of the cluster diameters and the maximum diameter of a cluster. The third measure considered takes into account the kinetic characteristic of the problem, and allows, in a controlled manner, that a cluster change along time. For each of the variants of the problem, we present algorithms, exact or approximation, some obtained complexity results, and open questions.
|
3 |
Contribution au Déploiement d'un Intergiciel Distribué et Hiérarchique, Appliqué aux Simulations CosmologiquesDepardon, Benjamin 06 October 2010 (has links) (PDF)
Les travaux présentés dans cette thèse portent sur l'exécution d'applications sur les environ- nements hétérogènes et distribués que sont les grilles de calcul. Nous étudions de bout en bout le processus permettant à des utilisateurs d'exécuter des applications scientifiques complexes. Les contributions de cette thèse se situent donc à plusieurs niveaux. 1) Déploiement d'inter- giciel hiérarchique : nous proposons dans un premier temps un modèle d'exécution pour les intergiciels hiérarchiques. À partir de ce modèle, nous présentons plusieurs heuristiques pour définir automatiquement la meilleure hiérarchie en fonction des exigences des utilisateurs et du type de plate-forme. Nous évaluons la qualité de ces heuristiques en conditions réelles avec l'intergiciel Diet. 2) Partitionnement de graphe : nous proposons un algorithme distribué et auto-stabilisant pour partitionner un graphe quelconque ayant des arêtes pondérées entre les nœuds. Le partitionnement est réalisé en fonction des distances pondérées entre les nœuds et forme des grappes au sein desquelles les nœuds sont à une distance maximale k d'un nœud élu dans la grappe. 3) Ordonnancement : nous étudions l'ordonnancement de tâches indépen- dantes sous des contraintes de limitation d'utilisation des ressources. Nous définissons des formulations en programme linéaire pour résoudre ce problème dans deux cas : lorsque les tâches arrivent toutes en même temps et lorsqu'elles ont des dates d'arrivée. 4) Simulations cosmologiques : nous avons étudié le comportement d'applications nécessaires à l'exécution de workflows de simulations cosmologiques. Puis, en se basant sur l'intergiciel de grille Diet, nous avons mis en place une infrastructure complète permettant à des utilisateurs non expérimentés de soumettre facilement des simulations cosmologiques sur une grille de calcul.
|
4 |
Algorithmes auto-stabilisants pour la construction de structures couvrantes réparties / Self-Stabilizing Algorithms for Constructing Distributed Spanning StructuresRivierre, Yvan 12 December 2013 (has links)
Cette thèse s'intéresse à la construction auto-stabilisante de structures couvrantes dans un système réparti. L'auto-stabilisation est un paradigme pour la tolérance aux fautes dans les algorithmes répartis. Plus précisément, elle garantit que le système retrouve un comportement correct en temps fini après avoir été perturbé par des fautes transitoires. Notre modèle de système réparti se base sur des mémoires localement partagées pour la communication, des identifiants uniques pour briser les symétries et un ordonnanceur inéquitable, c'est-à-dire le plus faible des ordonnanceurs. Dans la mesure du possible, nous nous imposons d'utiliser les plus faibles hypothèses, afin d'obtenir les constructions les plus générales de structures couvrantes réparties. Nous présentons quatre algorithmes auto-stabilisants originaux pour le k-partitionnement, la construction d'une (f,g)-alliance et l'indexation. Pour chacun de ces problèmes, nous prouvons la correction de nos solutions. De plus, nous analysons leur complexité en temps et en espace à l'aide de preuves formelles et de simulations. Enfin, pour le problème de (f,g)-alliance, nous prenons en compte la notion de convergence sûre qui vient s'ajouter à celle d'auto-stabilisation. Elle garantit d'abord que le comportement du système assure rapidement un minimum de conditions, puis qu'il continue de converger jusqu'à se conformer à une spécification plus exigeante. / This thesis deals with the self-stabilizing construction of spanning structures over a distributed system. Self-stabilization is a paradigm for fault-tolerance in distributed algorithms. It guarantees that the system eventually satisfies its specification after transient faults hit the system. Our model of distributed system assumes locally shared memories for communicating, unique identifiers for symmetry-breaking, and distributed daemon for execution scheduling, that is, the weakest proper daemon. More generally, we aim for the weakest possible assumptions, such as arbitrary topologies, in order to propose the most versatile constructions of distributed spanning structures. We present four original self-stabilizing algorithms achieving k-clustering, (f,g)-alliance construction, and ranking. For every of these problems, we prove the correctness of our solutions. Moreover, we analyze their time and space complexity using formal proofs and simulations. Finally, for the (f,g)-alliance problem, we consider the notion of safe convergence in addition to self-stabilization. It enforces the system to first quickly satisfy a specification that guarantees a minimum of conditions, and then to converge to a more stringent specification.
|
Page generated in 0.0913 seconds